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Abstract 

Background: It is difficult to create intuitive methods of controlling prosthetic limbs, 
often resulting in abandonment. Peripheral nerve interfaces can be used to convert 
motor intent into commands to a prosthesis. The Extraneural Spatiotemporal Com-
pound Action Potentials Extraction Network (ESCAPE-NET) is a convolutional neural 
network (CNN) that has previously been demonstrated to be effective at discriminating 
neural sources in rat sciatic nerves. ESCAPE-NET was designed to operate using data 
from multi-channel nerve cuff arrays, and use the resulting spatiotemporal signatures 
to classify individual naturally evoked compound action potentials (nCAPs) based 
on differing source fascicles. The applicability of this approach to larger and more com-
plex nerves is not well understood. To support future translation to humans, the objec-
tive of this study was to characterize the performance of this approach in a computa-
tional model of the human median nerve.

Methods: Using a cross-sectional immunohistochemistry image of a human median 
nerve, a finite-element model was generated and used to simulate extraneural record-
ings. ESCAPE-NET was used to classify nCAPs based on source location, for varying 
numbers of sources and noise levels. The performance of ESCAPE-NET was also com-
pared to ResNet-50 and MobileNet-V2 in the context of classifying human nerve cuff 
data.

Results: Classification accuracy was found to be inversely related to the number 
of nCAP sources in ESCAPE-NET (3-class: 97.8% ± 0.1%; 10-class: 89.3% ± 5.4% in low-
noise conditions, 3-class: 70.3% ± 0.1%; 10-class: 52.5% ± 0.3% in high-noise conditions). 
ESCAPE-NET overall outperformed both MobileNet-V2 (3-class: 96.5% ± 1.1%; 10-class: 
84.9% ± 1.7% in low-noise conditions, 3-class: 86.0% ± 0.6%; 10-class: 41.4% ± 0.9% 
in high-noise conditions) and ResNet-50 (3-class: 71.2% ± 18.6%; 10-class: 40.1% ± 22.5% 
in low-noise conditions, 3-class: 81.3% ± 4.4%; 10-class: 31.9% ± 4.4% in high-noise 
conditions).

Conclusion: All three networks were found to learn to differentiate nCAPs from dif-
ferent sources, as evidenced by performance levels well above chance in all cases. 
ESCAPE-NET was found to have the most robust performance, despite decreasing 
performance as the number of classes increased, and as noise was varied. These results 
provide valuable translational guidelines for designing neural interfaces for human use.
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Introduction
Every year, there are cases of injury or disease that result in the permanent loss of 
limb use. In 2005, there were an estimated 1.6 million people living with limb loss in the 
United States of America and that the number is estimated to increase to 3.6 million by 
2050 [1–3]. The loss of a peripheral limb can result in significant reduction in quality 
of life, and currently, there is a need for improvements in post-amputation options for 
affected individuals [1–3]. While restoring any limb functionality can play a significant 
role in the independence of a person, hand function is integral to the human experi-
ence of interacting with the world. Robotic prostheses have matured to allow for more 
complex limb movements, but consequently require more sophisticated strategies for 
the user to translate their intent into motion. One potential source for data that can be 
used as a control signal for prosthetic limbs is recordings from peripheral nerves [4, 5], 
which offer the benefits of fully implanted systems and, unlike electromyography, can 
be applicable if substantial amounts of musculature are missing. Detailed control sig-
nals are of particular interest for the control of hand function, which is remarkable in its 
complexity.

Fascicles in peripheral nerves progressively branch off to innervate different motor 
units and sensory organs [6]. Therefore, by determining where an electroneurographic 
(ENG) signal originates inside a nerve, recordings can be associated with particular 
functions of interest and thus used to control assistive technologies [7–9]. The process 
of discriminating the bioelectric activity of multiple neural pathways within a peripheral 
nerve is referred to as selective recording [10].

While all peripheral nerve interfaces (PNI) are invasive in the sense that they are 
implanted devices, they vary in their degree of invasiveness. Extraneural, intraneural, 
and regenerative electrode arrays have all demonstrated capabilities for selective record-
ing [4, 11, 12], but extraneural electrodes occasion the least amount of damage to the 
neural tissue and have been used for long-term implantations in humans [13]. Increas-
ing the recording selectivity of extraneural PNIs, therefore, has important translations 
implications.

Previous work proposed a deep learning-based approach to increase the amount of 
information that could be extracted from extraneural recordings. The Extraneural Spati-
otemporal Compound Action Potentials Extraction (ESCAPE) framework classifies indi-
vidual naturally evoked compound action potentials (nCAPS) according to the neural 
pathway in which they originated. The classification is accomplished using a convolu-
tional network (CNN) that is applied to spatiotemporal signatures derived from two-
dimensional arrays of contacts in a nerve cuff electrode [14]. The CNN originally used in 
the ESCAPE framework is known as ESCAPE-NET. ESCAPE-NET has been evaluated 
previously on a rat sciatic nerve model, both in vivo and in simulation [9, 14–16]. While 
the framework was shown to be effective at classifying rat sciatic nerve data, its ability to 
scale up to larger and more complex nerves is not well understood.

To characterize the performance of ESCAPE-NET in nerve models more relevant 
to human applications and thus support translational efforts, this study focused on 
investigating the efficacy of the ESCAPE framework in a simulated human median 
nerve model. Specifically, the goal of was to characterize the ability of the ESCAPE 
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selective recording framework to scale and classify increasing numbers of neural 
sources. To this end, two specific aims were formulated:

1. Characterize the relationship between the number of neural pathways to distinguish 
and the classification performance of ESCAPE-NET in a computational model of the 
human median nerve.

2. Investigate alternative neural network architectures to maximize the ability of the 
CNN to distinguish larger numbers of classes.

Results
The steps used in this study were as follows, and are each detailed in the Methods 
section:

1. Using a cross-sectional image from a cadaveric sample, a finite-element (FE) model 
was created to represent a human median nerve segment.

2. Simulated nCAPs were generated using the FE model, using varying noise levels and 
source neural pathways within the nerve to create a physiologically representative 
dataset.

3. The simulated nCAP data were used to train ESCAPE-NET, ResNet-50, and 
MobileNet-V2, to evaluate the relationship between classification performance 
and complexity for different architectures by varying levels of noise and number of 
classes (i.e., number of potential source neural pathways).

ESCAPE‑NET

ESCAPE-NET was found to have the highest accuracy and the lowest standard devia-
tion. The accuracy was found to be inversely related with an increase in classes as 
well as an increase in the amount of noise (Fig. 1). The two-way ANOVA revealed a 
significant interaction between the effects of the number of classes and noise (F(6, 
108)  = 1237.44, p < 0.001). Simple main effects analysis showed that noise levels had a 
significant effect on the classification accuracy (p < 0.001). Simple main effects analy-
sis also showed a significant effect between the number of classes and the classifica-
tion accuracy (p =  < 0.001).

When examining the variations as a function of the number of classes, the accuracy 
of the network had an average decrease from 97.8% ± 0.1% accuracy to 89.3% ± 5.49% 
in the 5% Noise case, and a more accentuated mean decrease in accuracy from 
70.3% ± 0.1% to 52.4% ± 0.3% in the 15% noise case.

There was a measurable variation in the accuracy as the noise levels were varied. The 
noise levels tested in this study correspond to the maximum seen in vivo after filter-
ing (15% of p–p signal amplitude). The mean classification accuracy change between 
5% and 10% noise (mean: −  19.3% ± 1.0%) was a similar reduction as between 10% 
and 15% noise (mean: − 13.7% ± 0.7%).
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The results suggest that ESCAPE-NET is a strong candidate for future studies involv-
ing the classification of in vivo human PNI data, if the number of sources required for 
the application is relatively low and signal quality is high.

ResNet‑50

ResNet-50 was found to have, on average, a lower classification accuracy when com-
pared to ESCAPE-NET on the same conditions (Fig. 1). Similar to the previous experi-
ment, there was a decrease in accuracy as the number of classes increased; however, the 
average accuracies were found to be lower and the variance wider. The 2-way ANOVA 

Fig. 1 Accuracy vs. number of classes. ESCAPE-NET (Top), MobileNet-V2 (middle), and ResNet-50 (bottom)
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showed a significant interaction between the effects of the number of classes and noise 
(F(6,108) = 3.34, p < 0.01). Simple main effects analysis showed that noise levels had 
a significant effect on the classification accuracy (p < 0.01). Simple main effects analy-
sis also showed a significant effect between the number of classes and the classification 
accuracy (p < 0.01).

It was hypothesized that ResNet-50 would outperform ESCAPE-NET; however, it was 
found that the overfitting of the network to the datasets resulted in lower accuracies 
when compared to ESCAPE-NET. The accuracy of the network had an average decrease 
from 71.2% ± 18.6% accuracy to 40.0% ± 22.4% in the 5% noise case, and a more accen-
tuated mean decrease in accuracy from 81.3% ± 4.3% to 32.0% ± 4.4% in the 15% noise 
case.

ResNet-50 also exhibited the expected inverse correlation with an increase in the noise 
level in the generated data. The mean drop in classification accuracy between 5 and 10% 
noise (−  1.3% ± 6.8%) was found to be comparable to the mean drop between 10 and 
15% noise (− 7.0% ± 3.9%).

MobileNet‑V2

MobileNetV2 was found to be similar in stability to ESCAPE-NET, albeit with slightly 
lower accuracies, and outperformed ResNet-50 (Fig.  1). The two-way ANOVA 
found a significant interaction between the effects of the number of classes and noise 
(F(6,108) = 144.44, p < 0.001). Simple main effects analysis showed that noise levels had 
a significant effect on the classification accuracy (p < 0.001). Simple main effects analy-
sis also showed a significant effect between the number of classes and the classification 
accuracy (p < 0.001).

The negative relationship between accuracy and number of classes (as well as noise) 
decreased at similar rates as ESCAPE-NET and remained within 10% between these 
two networks. When selecting a network to perform classification during in vivo experi-
ments, MobileNet-V2 may be a strong candidate of interest, considering its much 
smaller number of parameters.

When examining the variations as a function of the number of classes, the accuracy of 
the network had an average decrease from 96.4% ± 1.1% accuracy to 85.0% ± 1.7% in the 
5% noise case, and a more accentuated mean decrease in accuracy from 86.0% ± 0.6% to 
41.4% ± 0.9% in the 15% noise case.

Likewise, MobileNet-V2’s classification accuracy displayed the expected decrease as 
noise levels in the data increased, but nonetheless the network was still able to learn and 
perform classification well above chance levels. The mean drop in classification accuracy 
between 5 and 10% noise (mean: − 15.5% ± 0.7%) was similar to between 10 and 15% 
noise (mean: − 17.7 ± 0.3).

Discussion
Scalability to human nerves

The objective of this study was to determine if selective recording methods previously 
validated in an animal model could scale to a larger and more complex human nerve, 
the median nerve. The ESCAPE framework was found to be effective in selectively 
recording from human median nerves despite the more complex anatomy. One reason 
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for these findings may be due to the diameter of the human nerve in this study (8 mm) 
being larger when compared to rat sciatic nerves (< 2 mm). This allowed for larger inter-
contact distances on the electrode and allowed for lower levels of overlap across con-
tact recordings, allowing for greater spatial selectivity. ESCAPE-NET had a range of 
70–97% accuracy for the 3-class case across all noise levels and 50–90% accuracy for the 
10-class case across all noise levels. For context, the original ESCAPE-NET evaluated 
on rat sciatic nerve data with 3 classes had an accuracy of 80.8% ± 10.4% and F1-score 
of 0.747 ± 0.114 [14]. The updated version of the CNN described in [15] and used in 
this study, when evaluated on that same dataset, had an accuracy of 80.1% ± 11.1% and 
F1-score of 0.721 ± 0.120 (unpublished). Based on the points above, it was determined 
that multi-channel extraneural signals combined with CNNs are a promising method of 
selectively recording nCAPs in human nerves.

The performance trends outlined in this study can be used when determining design 
parameters for future human studies. Both the evaluation of the impacts of increas-
ing anatomical complexity and performance in varying noise conditions can be used 
to inform key requirements for future studies and implementations. To be applicable 
in vivo to human nerves, it is key to define the minimum requirements of the methodol-
ogy in terms of accuracy, granularity in terms of classification (number of classes able 
to be classified accurately), as well as the maximum noise level that still produces good 
performance. In terms of the applicability of the modeling results, previous studies by 
our group provide context for the comparison of results from peripheral nerve FEMs 
and those from in vivo studies [14, 16]. It was found that there tended to be a reduction 
in accuracy of approximately 10% translating from modeling studies to in vivo applica-
tion in the rat sciatic nerve. It is likely there can be a similar expected decrease of per-
formance when planning a future in vivo study in humans. With this in mind, this study 
can inform future study designs by providing guidelines about expected performance for 
different neural networks as a function of classification task and noise levels.

Assumptions and limitations

Modeling simplifications

A key simplification that was made in modeling is that a single immunohistochemis-
try (IHC) slice was extruded to form a uniform nerve segment (no variation in anat-
omy along the length of the nerve). This simplification was necessary due to the gaps in 
imaging of the fascicles throughout the length of the 5 cm, resulting from limitations of 
the imaging hardware and requirement to section the nerve into smaller segments. This 
implication of this simplification is that the interior of the nerve is more uniform than 
seen in vivo. In future studies, it is recommended that alternative imaging approaches, 
for example Micro-CT [17, 18], be used to enable the capture of the entirety of a tissue 
sample several centimeters in length.

Model variability

Future studies may also benefit from investigating different electrode dimensions and 
layouts. The Flat Interface Nerve Electrode (FINE) was chosen for this model due to its 
suitability for applications where the nerve segment has a flatter cross section. Addition-
ally, a 56-channel contact arrangement was chosen for consistency with the previous 
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studies that employed ESCAPE-NET [14, 16]. Electrodes with lower (or higher) spatial 
or temporal resolution warrant future investigation to determine appropriate trade-offs 
between instrumentation and algorithm complexity for a given application. It is possible 
further optimization of the networks may be required with different electrode designs. 
Longer electrodes (axially along the nerve) may provide greater temporal resolution, at 
the cost of requiring a larger segment of nerve to be accessible. If a thicker nerve seg-
ment is available, electrodes with greater inter-contact spaces circumferentially may 
allow for more identifiable spatial features and allow for greater classification accura-
cies. Conversely, smaller electrodes, both circumferentially and axially, or those with 
fewer channels may result in less informative features for the classification task and may 
require modifications and hyperparameter tuning of the networks to perform effective 
selective recording.

Noise simplification

The noise added to the data to simulate what is seen in vivo was white noise added at the 
amplitudes seen post-processing during in vivo experiments. The range chosen was rep-
resentative of experimental observations; however, the noise model used is independent 
of the nerve geometry. The noise model assumed that noise from electronic and other 
bioelectric sources can be approximated as Gaussian white noise, which is reasonable 
given that additive noise from multiple sources will tend to a Gaussian distribution by 
the central limit theorem. However, more detailed noise models (e.g., similar to [19]) 
may improve the accuracy of the simulations in predicting in  vivo performance. The 
impact of electromyographic artifacts that are not independent across contacts could 
also be investigated, as well as those of more transient effects such as movement arti-
facts. Reference montages other than a tripole configuration may also have an impact on 
the performance of the classification algorithms.

Furthermore, because of the greater distance between the contacts and active fasci-
cles (on average) due to a larger nerve diameter, it is likely that the signal-to-noise ratio 
(SNR) would be lower in a human implant when compared to a rat experiment. It is 
recommended that, in future studies involving simulation, a more detailed noise model 
be used to encompass a wider range of use cases. Nonetheless, the range of noise values 
investigated in this study clearly illustrates the impact of noise on selective recording 
performance as the number of classes increases.

Overlapping nCAPs

A simplification is the presence of a single nCAPs at any one time in the time-series data. 
Cases of overlapping nCAP waveforms were not considered. The likelihood of overlaps 
occurring increases with the number of sources in the nerve. The impact of partial over-
laps on the classification performance should be investigated in the future.

Fascicle distance

Each experimental case consisted of ten datasets and, due to the random nature of fas-
cicle selection, the datasets contained a variety of fascicle spreads. Datasets consisted 
of fascicles next to each other as well as those geometrically far apart. In a future study, 
investigating the impact of fascicle distance may provide insights on other strengths and 
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weaknesses of the ESCAPE framework and provide insight into potential modifications 
that improve the framework’s efficacy in in vivo situations and for clinical application. 
The effect of fascicle distance was evaluated here as a potential source of impact on clas-
sification accuracy; however, it was found that there was no correlation between fascicu-
lar distance and classification accuracy. The classification accuracy of ESCAPE-NET for 
all repetitions had < 1% variance, despite the different randomly selected combinations 
of fascicles with varying distances. This result was potentially due to the spatial distri-
bution provided by a flatter cross-sectional area, the use of FINE, and the simulation of 
a 56 contact electrode. The cross-sectional fascicular distance may impact the perfor-
mance of networks applied to electrodes with fewer channels or to locations with a more 
circular cross-sectional profile.

Network comparisons

The smallest network (based on number of trainable parameters) investigated was 
MobileNet-V2 (3.4 million trainable parameters), followed by ResNet-50 (23 million 
parameters) followed by the largest ESCAPE-NET (92 million trainable parameters). The 
network that showed the best performance was ESCAPE-Net followed by MobileNet-V2 
and then ResNet-50.

While MobileNet-V2 and ESCAPE-NET showed similar performance, the default 
ResNet-50 implementation was found to have diverging training and validation accura-
cies, suggesting the network was overfitting. This suggests that the network may be too 
complex for the task and is memorizing the data instead of learning the desired patterns. 
The variance in the results was the highest for ResNet-50, further suggesting overfitting. 
In future research, however, additional versions of ResNet can be investigated to explore 
possibilities and improvements in results that come from optimizing the parameter 
space or adding regularization. Regularization is a method of reducing the likelihood of 
a network overfitting the dataset by penalizing complexity, in this case using dropout 
layers to force the network to be able to operate with fewer weights. The 2022 version 
of ESCAPE-NET consisted of an architecture with built-in regularization in the form of 
dropout layers, which were potentially a factor in its stability and resistance to overfit-
ting. The relatively small MobileNet-V2 network, at 3.4 million parameters, performed 
well without additional regularization.

All 3 networks saw similar decreases in performance due to increasing the number 
of classes; however, ESCAPE-NET and MobileNet-V2 were found to be more stable 
in comparison to ResNet-50—which had a higher variation in validation accuracy 
in each of the test cases. As the number of active fascicles increased from 3 to 10, 
ESCAPE-NET’s classification accuracy decreased by approximately 10–20%, depend-
ing on the noise level. While the performance obtained for high-noise levels was well 
above chance levels, it may not be sufficient to enable reliable neuroprosthetic con-
trol in practice. On the other hand, at low-noise levels, performance remained high 
even up to 10 classes. This suggests that pre-processing strategies are an important 
avenue for the practical application of the ESCAPE framework. It is also worth not-
ing that MobileNet-V2 outperformed ESCAPE-NET for the 3-class case in 15% noise, 
and thus may be a good candidate when signal quality is low, but a limited number 
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of control signals is acceptable. Overall, high performance could be achieved in the 
presence of a high number of classes or high-noise level, but overcoming both of 
these factors simultaneously proved challenging.

Conclusion
The findings of this computational modeling study demonstrate that CNNs applied to 
multi-channel extraneural recordings are viable methods of selectively recording nCAPs 
in a human nerve, though significant decreases in performance can be expected when 
discriminating five or more distinct neural sources in noisy signals. ESCAPE-NET 
was found to have the most robust performance in comparison to MobileNet-V2 and 
ResNet-50. Based on these results, it can be concluded that the ESCAPE framework is a 
promising method for selectively recording in nerve anatomies more complex than the 
rat sciatic nerve and is a good candidate for classifying human extraneural ENG data.

The significance of this research comes threefold. The primary focus of this study was 
to provide a starting point for evaluating the scalability of the ESCAPE framework in a 
human model. A secondary benefit was the insights gained through the comparison of 
ESCAPE-NET with ResNet-50 and MobileNet-V2 within the context of classification of 
spatiotemporal signatures. Finally, an additional benefit of this study was the develop-
ment of an FEM model of the human median nerve, which can serve as a platform for 
further experiments to support translation of these approaches to humans.

Methods
Human median nerve

A nerve sample collected in a previous study [20] was used to generate the FE model 
used in this investigation. A 7 cm segment of the median nerve entering flexor digito-
rum superficialis along with the entire muscle belly was removed from the specimen 
(Fig. 2A). A 5 cm extramuscular segment of the median nerve was excised between 
the first and second suture indicated in Fig.  2B. The next step was to perform his-
tologic sectioning of the excised segment of the median nerve (Centre for Phenog-
enomics in Toronto, Ontario). The nerve segment was transversely sectioned into six 
equal parts and fixed in formalin. Each part was embedded in paraffin and sectioned 
into 5 μm-thick slices, each 250 μm apart. The sections were stained with anti-neuro-
filament antibody IHC. An Olympus VS-120 whole slide scanning system was used to 
acquire high-resolution (5183 pixels per inch) images.

Nerve FEM

Starting from a single IHC image, masks for the tissue and material layers were 
defined as detailed below and are illustrated in Fig.  3. The slice was chosen fitting 
three criteria: proximal to branching resulting in high fascicle density, clear bound-
aries visible on fascicle and surrounding tissues, singular nerve segment without 
branches or gaps visible in cross section. The resulting cross-sectional data were 
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extruded to obtain a 3 cm-long 3D grayscale image where each type of material (nerve 
tissue, saline, and electrode) was assigned to its own layer.

Endoneurium

The endoneurium of the nerve cross section was detected using MATLAB (MathWorks, 
Natick, USA) image processing libraries and Otsu’s method to detect the boundary 
edges of the fascicles from the IHC images [21]. Smoothing and sizing constraints were 
used to isolate fascicles and allow for meshing in later steps. A minimum size constraint 
was placed to prevent artifacts (blood vessels, imaging artifacts, or circular shapes in 
other areas of the connective tissue) from incorrectly being identified as a fascicle. These 
boundaries were filled, and masks of the fascicles were generated.

Perineurium

The perineurium layer was approximated using an average thickness of perineurium tis-
sue in human median nerves [22]. The perineurium tissue was approximated by dilat-
ing the endoneurium mask by 3% and then connecting any overlapping regions into one 
singular area in the mask. The endoneurium mask was then subtracted to isolate the 
perineurium tissue.

Epineurium

The epineurium layer was masked by dilating the perineurium mask until the aver-
age thickness of the epineurium mask matched the original IHC image. Due to the 
poor quality of the endoneurium IHC image, this method was found to match the IHC 

Fig. 2 Cadaveric dissection of median nerve and flexor digitorum superficialis muscle. A Overview. B Excised 
segment of median nerve. Image adapted from [20] with permission
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reference image more closely than those generated through thresholding as outlined in 
[21]. The perineurium and endoneurium masks were then subtracted from the layer to 
isolate the epineurium tissue.

Electrode

The outer and inner dimensions of the electrode were defined following the dimensions 
of a FINE [23, 24]. The mask of the electrode was created by defining a hollow rectan-
gle with electrode thickness matching the FINE with the length and width scaled to fit 
the modeled nerve cross section (‘short side’ length: 4.9 mm, ‘long side’ width: 9.0 mm, 
height: 20 mm, and material thickness: 0.65 mm). Due to the oblong shape of the nerve 
segment chosen as the basis for the model, a rectangular FINE electrode was selected 
for the simulations rather than a cylindrical nerve cuff. This configuration consisted of 
seven “layers” of contacts running axially along the nerve segment.

Each “layer” was a rectangular shape with two long and two short sides. Contacts 
were simulated to be on the two long edges of the rectangular cross section, four con-
tacts equally spaced per edge. The inter-contact distance along one edge of a layer was 

Fig. 3 Material layer isolation. Raw image (top left), endoneurium mask (top middle), perineurium mask (top 
right), epineurium mask (bottom left), electrode mask (bottom middle), and combined mask (bottom right)
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2.25 mm, and the inter-layer distance was 2.86 mm. The FINE electrode was modeled 
around the originally imaged cross section of the median nerve without any additional 
deformations of the nerve that may happen in practice during the application of the 
electrode. During in  vivo application, the FINE is designed to deform the nerve to fit 
the cross section of the electrode. This allows for greater geometric separation between 
fascicles in the cross-sectional plane, improving recording selectivity. Due to a lack of 
literature on the expected migration of fascicles in this type of application, as well as 
the already elongated shape of the nerve in our sample, the original cross section of the 
nerve was maintained. This was done to retain the accuracy of the modeling of the tissue 
structures within the nerve segment and to act as a “worst case” scenario from a signal 
selectivity perspective.

Saline

The saline layer was modeled to be a cylinder of diameter 11 mm, approximately 20% 
wider than the long edge of the electrode, to prevent boundary effects in the electrical 
model of the nerve section [10].

Computational model generation

Once the 3D geometry of the model had been created as described above, a tetrahedral 
mesh (Fig. 4) was generated using iso2mesh, an MATLAB-based mesh generator [25].

Finite‑element model

The 3D mesh of the nerve segment was used to generate a computational model that 
simulated the propagation of the AP through the nerve and output the simulated 
recordings at each of the electrical contacts in the nerve cuff. Inter-node distances 
of < 0.1 mm or smaller were used to ensure that there was sufficient resolution to char-
acterize the current path through the mesh. To refine the mesh design, larger mesh 
element sizes were used in the saline layer to allow for finer mesh resolution in the 
connective tissues, specifically the perineurium. Within the nerve, the mesh density 

Fig. 4 Finite-element mesh: isometric view with transparent saline layer (left), isometric view with 
transparent electrode and saline layers (middle), and cross-sectional view at center of mesh along z-axis and 
transparent saline layer (right)
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was set to be sufficiently high, such that there were several elements of thickness for 
each tissue layer (i.e., no tissue layer was traversed at any point within the mesh with 
a single element in any direction). This was done to model the impact of each tis-
sue layer on the simulated current pathways while retaining a small enough mesh to 
meet memory limitations of both SCIRun and MATLAB. The electrical model that 
was used to generate simulated APs was created using the process described by Wein-
stein et al. [26] and used the conductivity values in Table 1, drawn from [27, 28]. The 
relationship between the contact voltages and dipole sources located at the mesh ele-
ments is shown in Eq. 1

The recording matrix D is a matrix representation of the voltage values across all 56 
contacts over T  timesteps of the simulation. The simulated action potential is repre-
sented in source matrix J  as a set of voltages across all elements in the mesh over T  
timesteps in the simulation. The transformation from the voltages in the mesh to the 
voltages at the electrode contacts is done using leadfield matrix L. The leadfield matrix 
is an M x N matrix used to map neural activities at different locations within the nerve 
to recordings at the nerve cuff contact sites. Briefly, the leadfield matrix was generated 
using current source–sink pairs between contacts in the electrode, and then applying the 
reciprocity principle to obtain measured voltages at the electrode contacts in response to 
a dipole current source in any given mesh element, as outlined in detail in [26]. The lead-
field matrix was generated using FE analysis to solve the forward problem using SCIRun 
(NIH/NIGMS Center for Integrative Biomedical Computing, USA)—a software used to 
generate realistic bioelectric models [29]. The leadfield matrix generated in SCIRun was 
imported into MATLAB and converted to a tripolar reference using the average of the 
contacts in the outer rings. The resulting leadfield was then used to generate the simu-
lated dataset for training and evaluating the CNN responsible for nCAP classification.

Action potential simulation

One thousand ideal, noiseless nCAPs of 100 time samples at a sampling rate of 30 kHz 
each were generated with slight variation in signal amplitudes and offsets. Each sim-
ulated nCAP used a waveform randomly sampled from this set. The waveform was 
then mapped to mesh elements based on the cross section within the nerve, the con-
duction velocity (60 m/s), and the spacing between the nodes of Ranvier to create the 

(1)D = LJ .

Table 1 Material conductivities

Material type Conductivity (S/m)

Endoneurium (longitudinal) 0.5710

Endoneurium (transverse) 0.0826

Perineurium 0.0021

Epineurium 0.0826

Saline 2

Cuff 1 ×  10–7
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source matrix J, similarly to the process described in [16, 30]. The neural source data 
in J were then multiplied with the leadfield matrix to obtain the simulated recordings 
from the 56 electrode array [26].

The noiseless time-series output from the simulation then had white noise added to it. 
The variance of the noise added was determined using a ratio of the maximum absolute 
value across all channels, outlined in Eq. 2

The noisy data were compared to in vivo rat data to select a scaling factor n that pro-
duced an appropriate SNR. The average post-filtering noise (no spike train) and signal 
(spike train) voltage values from previous rat experiments were used to determine the 
magnitude of the simulated noise. The ratio of voltages was replicated in simulation 
to ensure that the simulated instrument noise was within the range observed in  vivo. 
Examples of the three noise levels investigated are shown in Fig. 5.

To prevent the CNN from learning absolute voltages rather than spatiotemporal pat-
terns, all signals were normalized to the maximum absolute value of the voltage across 
all channels. This was done to ensure that classification was based on relative patterns 
between channel, rather than on absolute signal amplitudes.

The data was then processed into 56 × 100 spatiotemporal signatures to train and test 
the CNNs.

Spatiotemporal signatures

Spatiotemporal signatures were generated for each simulated nCAP. “Spatial emphasis” 
(SE) signatures were created by grouping contacts along each rectangular layer, while 
“temporal-emphasis” (TE) signatures were created by grouping contacts axially along 
the nerve [14]. The electrode configurations and the resulting spatiotemporal signatures 
can be found in Fig. 6.

Spatiotemporal signatures of the electrode signals are represented with time on the 
x-axis, contact number of the y-axis, and the value of each pixel denoting the recorded 
voltage. These were then used as inputs to the CNN [14].

CNN implementation

ESCAPE-NET is a custom CNN built along a classical architecture. The performance 
of the ESCAPE framework was evaluated with ESCAPE-NET as well as with ResNet-50 
and MobileNetV2, which have been shown to have high accuracy when used with image 
sets [31–33]. These architectures were chosen based on three criteria: network complex-
ity, training set size requirements, and top-1% accuracy on the MNIST dataset. Future 
application of this technology will likely require on-chip and real-time application; 
therefore, networks of smaller complexity were given higher priorities. High accuracy 
is necessary due to the potential impacts of misclassifying the neural signals (potentially 
resulting in difficult-to-use prosthetics if applied as a control system). The goal of this 
research was to empower a future solution that may be applied to low-power processing 
modules, and as a result, required networks of relatively low depth and training require-
ments. As a result, the entire training and test set was capped at 30,000 samples, even 

(2)var(noise) = n×max
∣

∣noiseless signal across all channels
∣

∣
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Fig. 5 5% (Top), 10% (middle), and 15% (bottom) noise samples
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though simulated data can allow for much larger datasets. The network size was also 
capped at networks below 100 million parameters.

ESCAPE-NET, with 92 million parameters, ResNet-50, with 23 million parameters, 
and MobileNet-V2, with 3.4 million parameters were determined to be suitable net-
works that represent deep architectures of varying orders of magnitude. This allowed for 
an investigation into the effect of network complexity on classifying PNI data.

ESCAPE-NET uses a 2-stream architecture taking SE and TE signatures as inputs, 
and then concatenating the extracted features [14] The alternative CNNs (ResNet-50, 
MobileNet-V2) were tested by replacing the base CNN in each stream of the multi-stage 
architecture with the new network under investigation.

ESCAPE‑NET implementation

Each stream of the ESCAPE-NET architecture follows a common CNN architecture 
using convolutional layers, pooling layers, and a fully connected layer [14]. The ver-
sion of ESCAPE-NET used in this study was an updated version previously introduced 
in [15], which included additional dropout layers to improve generalizability. ESCAPE-
NET was implemented using the Keras wrapper of TensorFlow libraries. ESCAPE-NET 
was implemented with a learning rate of 1e-3, decay of 1e-6, momentum of 1e-9, and an 
early stopping criterion of 15 epochs of no improvement in the validation loss.

ResNet‑50 implementation

ResNet is one of the most widely used CNN architectures, for both image and non-image 
datasets. ResNet employs a multi-branch architecture and its variants have been shown 

Fig. 6 Spatial (above) vs. temporal (below) emphasis representations of electrode array signals
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to outperform most other networks with similar complexity for image classification [31, 
33]. The ResNet implementation used in this study was the ResNet-50 Keras package. 
This was chosen due to it being a widely used ResNet implementation (stable package 
support and high likelihood of use in similar future studies) that met the requirements 
of the CNNs of interest in this study. ResNet-50 was implemented with a learning rate of 
1e-3, decay of 1e-6, momentum of 1e-9, and an early stopping criterion of 40 epochs of 
no improvement in the validation loss. Learning rates of 1e-2 and 1e-4 were also investi-
gated and found not to provide improved performance.

MobileNet‑V2 implementation

MobileNet-V2 is a network that maximizes skipped connection blocks to improve its 
robustness toward a vanishing gradient upon backpropagation and optimization steps to 
minimize computational and memory requirements [34]. The MobileNet implementa-
tion used for this study was the Keras package MobileNet-V2. This was chosen due to 
it being the latest stable and widely used implementation of Mobile Net. MobileNet-V2 
was implemented with a learning rate of 1e-3, decay of 1e-6, momentum of 1e-9, and an 
early stopping criterion of 40 epochs of no improvement in the validation loss. Learn-
ing rates of 1e-2 and 1e-4 were also investigated and found not to provide improved 
performance.

Performance evaluation

The evaluation was based on the ability to correctly identify the fascicle in which an 
nCAP originated. Classification accuracies were used to evaluate the performance of the 
CNNs. Due to the balanced nature of the dataset, the macro- and micro-F1-scores did 
not provide any additional insight to the performance of the network over accuracy and 
thus are not reported here.

Each network was trained and evaluated with simulated data using a threefold cross-
validation method for each number of classes. The scenarios consisted of 3, 5, 7, and 10 
active fascicles, with 5%, 10%, and 15% noise, for a total of 12 test conditions. Ten com-
plete training/test datasets were generated for each of these conditions for a total of 120 
experiments per network. All datasets consisted of 30,000 nCAPs, balanced among the 
number of classes for that scenario. Each dataset (for example each of the datasets of the 
10 fascicles and 15% noise scenario) was used for threefold cross-validation, each time 
including 20,000 simulated nCAPs for the training set and 10,000 simulated nCAPs for 
the test set. The size of the training sets are consistent with our previous in vivo work, in 
which several thousand nCAPs could be acquired through repeated sensory stimuli over 
the course of a few minutes [14].

The effect of the number of classes was investigated by varying the number of possible 
sources in the simulated recordings. Each neural pathway included in a simulation was 
a separate class in the classification task. The nerve segment chosen for simulation con-
tained 17 possible fascicles as nCAP sources. The steps for evaluating each case were as 
follows:

1. Determine the number of classes to be investigated (c classes)
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2. Pick c fascicles at random from the 17 possible pathways to act as the neural path-
ways of interest.

a. Cross-sectional location (node of nCAP origin in the mesh) within the selected 
fascicle was picked at random for each nCAP to add variability to simulated 
recordings from each fascicle.

3. Develop ten datasets for each value of c, each with a different random selection of 
fascicles.

4. Perform CNN training and testing for each of the ten datasets for each c-class case.

a. Average accuracy for each test scenario was used as evaluation metrics, reported 
as mean ± standard deviation across the ten repetitions.

Statistical analysis

A two-way analysis of variance (ANOVA) was used to determine the influence of the 
number of classes and the noise level on the classification accuracy, as well as interac-
tions between the number of classes and the noise level. The two-way ANOVA was per-
formed using the MATLAB statistics package.
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