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Abstract

Background: Differential-type and integral-type formulations are two common
approaches in modeling viscoelastic materials. A differential-type theory is often
derived from a Helmholtz free energy function and is usually more suitable for the
prediction of strain-rate dependent mechanical behavior during rapid loading,
while an integral-type theory usually captures stress relaxation more efficiently than
a differential-type theory. A modeling approach is needed to predict the viscoelastic
responses during both rapid loading and relaxation phases.

Methods: A constitutive modeling methodology based on the short and long-term
internal variables was proposed in the present study in order to fully use the better
features of the two types of theories. The short-term variables described the loading
rate, while the long-term variables involving time constants characterized loading
history and stress relaxation.

Results: The application of the methodology was demonstrated with particular
formulations for ligament and articular cartilage. Model parameters were calibrated for
both tissues with experimental data from the literature. It was found that the proposed
model could well predict a wide range of strain-rate dependent load responses during
both loading and relaxation phases.

Conclusion: Introducing different internal variables in terms of their time scales
reduced the difficulties in the material characterization process and enabled the model
to predict the experimental data more accurately, in particular at high strain-rates.

Keywords: Articular cartilage, Constitutive modeling, Ligament, Strain-rate sensitivity,
Viscoelasticity
Background
Biological tissues, such as ligaments and articular cartilages, are viscoelastic, i.e. their

mechanical behavior is dependent on the history of deformation. Furthermore, the load

response of the tissues can be strain-rate dependent, i.e. a greater stress is produced if

a strain is applied at a higher speed. Classical theories of viscoelasticity have been

mostly formulated using hereditary integrals in describing the stress or strain response,

referred to as the integral-type theories of viscoelasticity. One typical example is the

quasi-linear (QLV) theory of viscoelasticity [1] that has been widely adopted for soft

biological tissues [2-6]. Examples can also be found in polymer mechanics, such as the
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modified superposition method, Schapery’s nonlinear theory and Bernstein-Kearsley-

Zapas theory [7]. Other integral-type theories of viscoelasticity can be found in a review

paper of linear and nonlinear viscoelasticity [8].

Another approach is originated from hyperelasticity in which the stress is obtained from

a Helmholtz free energy function [9] that is characterized by a measure of deformation.

The history of deformation must be introduced into the energy function to account for

viscoelasticity [10]. The viscoelastic response may be decomposed into an elastic response

and a viscous response. The elastic response is determined by the external loadings

or external variables. The viscous response, however, is determined by internal vari-

ables associated with the viscous mechanism in the material, which can be mathem-

atically described by an evolution equation, normally a differential equation. Upon

solving the evolution equation, the stress can be obtained in the form of hereditary

integrals that share a mathematical analogy with the integral-type theories of visco-

elasticity. In the case of a linear evolution equation with fixed time constants, a

quasi-linear viscoelastic formula can be obtained. This method has been used in

modeling plasticity [11], viscoelasticity [12], damage and growth [13]. An advantage

of using internal variables is to establish a physical interpretation and thermodynamically

acceptable ground for viscoelasticity.

The integral-type theories of viscoelasticity usually capture the stress relaxation

(long-term) more efficiently than the stress response during loading (short-term). The

QLV theory, for instance, has been developed for the case of step loading which is not

practically possible in experiments. Therefore, modified methods have been introduced

for improved mechanical characterization [14-16]. One approach is to characterize the

viscoelastic response with different material parameters for the loading and relaxation

phases, or short and long-term responses [17]. Some differential-type viscoelastic

models, on the other hand, contain decoupled viscous and elastic terms in the Helmholtz

free energy function, in which the viscous term characterizes the strain-rate dependent

load response and the elastic term describes the equilibrium load response [18,19]. This

type of constitutive models provides a good fit to the experimental data during loading

phase especially at high strain-rates, but fails to predict the stress relaxation when the

strain-rate is nearly zero.

The objective of the present study was to develop an anisotropic viscoelastic model

that is capable of predicting both short and long-term responses of strain-rate sensitive

viscoelastic materials. Our approach followed a study on human patellar tendons,

where the viscous stress in an isotropic model was decomposed into two terms accord-

ing to their time scales, short or long term [20]. We further developed a general formu-

lation for anisotropic materials and particular formulations for ligament and articular

cartilage. Moreover, we introduced a framework of internal variables to describe the

short and long-term viscous responses. The short-term internal variable was chosen to

be the time-derivative of deformation, whereas the long-term internal variable was

obtained from the evolution equation.
Methods
An anisotropic visco-hyperelastic constitutive model was introduced and characterized

for the solid matrix of ligament and articular cartilage. The relevant numerical
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procedure was developed for the matrix and implemented into the commercial finite

element software ABAQUS (Simulia, RI, USA) so that the constitutive model can be

used for the stress analysis of general boundary-value problems.

General formulation of the constitutive model

The deformation gradient is denoted by F(X) and the right Cauchy-Green deformation

tensor by C = FTF. The Helmholtz free energy function can be written as a function of

the current deformation, C, the history of deformation, Ξ, and the material structure

tensor, N0

Ψ ¼ Ψ C;Ξ;N0ð Þ ð1Þ

The history Ξ is referred to as internal variable, because it is associated with the in-
trinsic material properties. The structure tensor is the tensor product of the unit vector

n0 in the primary material direction, e.g. the fiber direction, N0 = n0⊗ n0. This tensor

characterizes the anisotropy of the material. We can further introduce short and long-

term internal variables to describe the history of deformation. The short-term internal

variable describes the rate and history of deformation during the loading phase and can

be chosen to be the time derivative of the right Cauchy-Green deformation tensor, Ċ.

The long-term internal variable, Γ, determines the viscoelastic behavior of the material

at larger time scales, e.g. during stress relaxation. The Helmholtz free energy function

can therefore be written in terms of the short and long-term internal variables:

Ψ ¼ Ψ C; _C; Γ;N0
� � ð2Þ

It is further assumed that the elastic and viscous terms can be decoupled following
previous studies [10,18,19]:

Ψ C; _C; Γ;N0
� � ¼ Ψe C;N0ð Þ þΨv

s C; _C;N0
� �þΨv

l C; Γ;N0ð Þ ð3Þ

The superscripts e and v stand for elastic and viscoelastic responses respectively; and
the subscripts s and l represent the short and long-term viscous responses respectively.

The viscous response is normally determined by the combined effects of several in-

ternal variables. For simplicity, however, the short and long-term internal variables were

assumed to be decoupled in the present study: the viscous response during loading

phase is solely determined by the short-term internal variable (Ψ v
l ¼ 0 during loading);

and the stress relaxation is only determined by a set of evolutionary mechanisms (Ψ v
s ¼ 0

during relaxation).

The evolution equation commonly used for viscoelastic materials is in the differential

form of viscous stress, Sv, and elastic stress, Se [21-23]:

_Sv þ Sv

τi
¼ gi _S

e ð4Þ

where τi are time constants and gi are ratios of short-term versus equilibrium stresses

(i = 1, 2, …). Upon solving this equation, the viscous stress can be obtained as:
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Sv tð Þ ¼ gi

Z t

0

exp − t−Tð Þ=τi½ � _Se dT ; 0≤t≤δð Þ ð5Þ

The time derivative of the elastic stress, Ṡe, is non-zero during loading phase (0 ≤ t ≤ δ).
Therefore, the viscous response depends on the rate of loading reflected in the elastic

stress rate as well as the exponentially reduced relaxation function. Eq (5) is a general

form of the viscous stress, so we can use it to determine the short-term viscous stress,

Svs tð Þ 0≤t≤δð Þ . When the loading phase is short, only one time constant τi is needed, i.e.

one internal variable is used for the short-term response. The long-term viscous

stress (t > δ) may require a few internal variables (time constants) to account for. Each

variable contributes a particular weight, wi, that decays at a specific rate associated

with a time constant, τi . The long-term viscous stress is assumed to depend on the

short-term viscous stress at the end of loading phase, Svδ ¼ Svs t ¼ δð Þ as determined

by Eq. (5). Therefore, we introduce the following form of evolution equation:

_Sv
l þ

Svl
τi

¼ wiSvδ ; t ≥ δð Þ ð6Þ

Here, Sv can be considered as the part of the long-term viscous stress contributed by
l

the ith internal variable. The long-term viscous response can then be obtained as

follows:

Svl tð Þ ¼
X
i

wiSvδ

Z t

δ

exp − t−Tð Þ=τi½ � dT ; t ≥ δð Þ; ð7Þ

This equation shows the decay of the long-term viscous stress (t > δ) from the peak
stress at the end of the loading phase, Svδ . It should be noted that gi in Eq. (4) represents

the magnitude of stress relaxation. In the standard linear solid model of viscoelasticity,

it can be interpreted as the ratio of the stiffness of the Maxwell body to the stiffness of

the elastic body. On the other hand, a wi reflects the contribution associated with an

internal variable to the total response (dimension is 1/time as shown in Eq. (6), Σwi = 1).

In consistence with Eq. (3), the total stress response of the material can be written as

the summation of the elastic stress (Se), short Svs
� �

and long-term Svl
� �

viscous stresses

using the same index convention:

S tð Þ ¼ Se tð Þ þ Svs tð Þ þ Svl tð Þ ð8Þ

The long-term response is naturally contributed from multiple mechanisms with differ-
ent time constants τi and weights wi. In the examples to follow, the time constants τi were

considered to be independent of strain. Therefore, a quasi-linear form of viscoelasticity was

obtained. However, the time constant can also be defined as a function of strain leading to

a fully nonlinear description of viscoelasticity [24].

Particular formulation for ligaments

The extracellular matrix of ligament is mainly composed of a dense network of collagen

fibers mostly aligned in the longitudinal direction of the tissue. This structure forms a

transversely isotropic characteristic to the tissue. In the present study, ligament was mod-

eled as a composite material consisting of an isotropic non-fibrillar matrix reinforced by
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the fiber network. As a ligament is physiologically subjected to tension when the fibers

sustain most of the load, only the fibrillar matrix was considered viscoelastic and the

non-fibrillar matrix was modeled as elastic. The energy of the non-fibrillar matrix, as

indicated by the subscript m, is uniquely determined by the deformation, C. The en-

ergy of the fibrillar matrix, as indicated by the subscript f, is also associated with the

structure tensor N0 and the internal variables. Therefore, the Helmholtz free energy

for ligaments can be written in the decoupled form as

Ψ C; _C; Γ;N0
� � ¼ Ψe

m Cð Þ þΨe
f C;N0ð Þ þΨv

s;f C; _C;N0
� �þΨv

l;f C; Γ;N0ð Þ ð9Þ

The non-fibrillar matrix was considered to be Neo-Hookean (first term), while an ex-
ponential function was adopted for the hyperelastic part of the fibrillar matrix (second

term) [19]. The exponential function describes the stiffening of the tissue at larger

strains arisen by the gradual recruitment of collagen fibers during further deformation

[25]. Although the collagen fibers show a great stiffness in tension, they cannot sustain

compression due to their slenderness. Therefore, a piecewise energy function was

employed for the second term in equation (9) that determines whether the collagen

fibers contribute to the load support based on their deformation state:

Ψe ¼ Ψe
m þΨe

f

¼
a1 I1−3ð Þ; if I4≤1 compressionð Þ
a1 I1−3ð Þ þ a2

2a3
exp a3 I4−1ð Þ2� �

; if I4 > 1 tensionð Þ
(

ð10Þ

Here, I1 is the first invariant of C defined as I1 =C : I =CijIij = tr{C}, and I4 is an invariant
defined as I4 =C :N0. Therefore, I4 is actually the square of the stretch ratio λf in the fiber

direction, i.e. I4 ¼ λ2f . As can be seen in this equation, the contribution of the collagen fi-

bers is zero when the tissue is under compression, i.e., Ψ e
f ¼ 0 when I4 ≤ 1. The material

constants, a1, a2 and a3, must be positive to ensure the convexity of the function.

The short term viscous function was proposed as follows [19]:

Ψv
s;f ¼

0
0:5 a4 I4−1ð Þ exp a5 I4−1ð Þ2� �

J5 ;
if I4 ≤ 1
if I4 > 1

�
ð11Þ

where J5 is an invariant defined as J5 =Ċ2 :N0 and a4 and a5 are viscous material pa-

rameters. As mentioned previously, only collagen fibers were considered viscoelastic

and thus, the anisotropic energy functions are written only for the fiber network. Simi-

lar to the elastic part, the functions are zero under compression (I4 ≤ 1). This form of

short-term viscous function includes the nonlinearities of the short-term viscous re-

sponse associated with strain (I4) by the nonlinear exponential function of I4.

The second Piola-Kirchhoff stress for elastic and viscous terms are then derived from

the energy functions [9,19]:

Sem ¼ 2a1I ð12Þ

Sef ¼ 2a2 exp a3 I4−1ð Þ2� �
I4−1ð ÞN0 ð13Þ

Svs ¼ a4 I4−1ð Þ exp a5 I4−1ð Þ2� �
N0 _C þ _CN0
� � ð14Þ

The total stress can then be written as the summation of the stresses obtained hitherto
(Eqs. 12–14) as well as the long-term stress (Eq. 7) as a piecewise function:
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S tð Þ ¼

pC−1 þ 2a1I ; if I4≤1

pC−1 þ 2a1Iþ 2a2 exp a3 I4−1ð Þ2� �
I4−1ð ÞN0 þ a4 I4−1ð Þ exp a5 I4−1ð Þ2� �

N0 _C þ _CN0
� �

þ
X
i

wi

Z t

δ
exp − t−Tð Þ=τi½ �SvsdT ; if I4 > 1

8>>>>><
>>>>>:

ð15Þ

where p is a Lagrange multiplier that was introduced to enforce the tissue incompressibility.

The material parameters can be obtained from uniaxial tensile tests. Assuming the x

direction to be the direction of loading and considering the material to be incompressible,

the deformation gradient is of the following form:

F ¼ λ;
1ffiffiffi
λ

p ;
1ffiffiffi
λ

p
� 	T

I ð16Þ

from which the right Cauchy-Green deformation tensor can be obtained:
C ¼ λ2;
1
λ
;
1
λ

� 	T
I ð17Þ

Using the aforementioned matrix (Eq. 17) along with the structure tensor obtained
from the unit vector of fibers n0 ¼ i
→

to obtain I4, the components of the hyperelastic

second Piola-Kirchhoff stress will be obtained from Eqs. (12–14):

Se11 ¼ 2a1 þ p=λ2 þ 2a2 λ2−1
� �

exp a3 λ2−1
� �2h i

ð18Þ

Se22 ¼ Se33 ¼ 2a1 þ pλ ð19Þ

As there is no stress in the lateral directions, i.e., Se22 ¼ Se33 ¼ 0, the Lagrange multiplier,
p, can be calculated as:

p ¼ −2a1=λ ð20Þ

The time derivative of the right Cauchy-Green deformation tensor, Ċ, is also needed

for calculation of the viscous stresses:

_C ¼ 2λ _λ;− _λ=λ2;− _λ=λ2
� �T

I ð21Þ

The viscous stress can also be obtained from Eq. (14) similarly by substituting the

corresponding matrices (Eqs. 17 and 21):

Sv11 ¼ 4a4λ λ2−1
� �

exp a5 λ2−1
� �2
 �

_λ ð22Þ

The first Piola-Kirchhoff or nominal stress is commonly used in experimental studies.

It can be obtained from the second Piola-Kirchhoff stress according to:

P ¼ J−1 F S ð23Þ

Therefore, the nominal stress in the direction of loading was derived for data fit as

follows:
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P11 ¼

2a1 λ−1=λ2
� �

; if I4≤1

2a1 λ−1=λ2
� �þ 2a2λ λ2−1

� �
exp a3 λ2−1

� �2h i
þ 4a4 λ2−1

� �
λ2 exp a5 λ2−1

� �2h i
_λ

þ
XN
i¼1

wi

Z t

δ
exp − t−Tð Þ=τi½ �Pv

11dT ; if I4 > 1

8>>>><
>>>>:

ð24Þ

Particular formulation for articular cartilage

Articular cartilage can be modeled as a fluid-saturated non-fibrillar matrix reinforced

by a collagen network [26,27] with various fiber alignments depending on the depth of

the tissue and site where the tissue is located in the joint. A thin and narrow strip of

cartilage aligned in the fiber direction, as used in uniaxial tensile testing, is similar to a

ligament as the fluid pressurization does not affect the tensile properties significantly

[28]. The hyperelastic Helmholtz free energy function for cartilage is also composed of

isotropic and anisotropic parts representing the non-fibrillar and fibrillar matrices re-

spectively. Similar to the ligament model (Eq. 10), a piece wise function is used to de-

scribe the tension-compression difference of the fibers in articular cartilage:

Ψe ¼
b1 I1−3ð Þ ;
b1 I1−3ð Þ þ 1

2
b2 I4−1ð Þ2 þ 1

3
b3 I4−1ð Þ3 ;

if I4 ≤ 1
if I4 > 1

(
ð25Þ

The short-term viscous potential was introduced to resemble Equation (11) as
follows:

Ψv
s ¼

0; if I4 ≤ 0
b4 I4−1ð ÞJ5 lnI4; if I4 > 0

�
ð26Þ

By enforcing incompressibility for the tissue in tensile testing, the second Piola-

Kirchhoff stress is obtained:

S tð Þ ¼
pC−1 þ 2b1I ; if I4≤1
pC−1 þ 2b1Iþ 2b2 I4−1ð ÞN0 þ 2b3 I4−1ð Þ2N0 þ 2b4 lnI4 I4−1ð Þ N0 _C þ _CN0

� �
þ
X
i

wi

Z t

δ
exp − t−Tð Þ=τi½ �SvsdT ; if I4 > 1

8>>><
>>>:

ð27Þ

This equation is similar to Eq. (15), and p is the Lagrange multiplier.

Similar to Eq. (24), the nominal stress in a uniaxial tensile test can be obtained:

P11 ¼
2b1 λ−1=λ2

� �
; if I4≤1

2b1 λ−1=λ2
� �þ 2b2λ λ2−1

� �þ 2b3λ λ2−1
� �2 þ 8b4λ

2 lnλ2 λ2−1
� �

λ2

þ
X
i

wi

Z t

δ
exp − t−Tð Þ=τi½ �Pv

11dT ; if I4 > 1

8>>><
>>>:

ð28Þ

This 1D formulation can then be extended to a 3D formulation of the solid matrix
for articular cartilage. Darcy’s law must be incorporated to account for fluid pressure in

the tissue under compressive loadings.
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Numerical implementation

The constitutive model proposed here was implemented in the finite element software

ABAQUS (Simulia, Providence, RI) by means of a UMAT, a user-defined subroutine in

FORTRAN. The constitutive behavior used in ABAQUS for the fluid flow is governed

by Forchheimer’s law that includes Darcy’s law as a linear case when the fluid velocities

are low. The Newton–Raphson method is used in ABAQUS which requires the stress

and the stiffness matrices to be updated in each time step. The Jaumann rate of stress

is used in calculations and correspondingly, the Jaumann elasticity tensor along with

the Cauchy stress are needed. The Cauchy stress tensor can be obtained by pushing the

second Piola-Kirchhoff stress forward [29]:

σ ¼ J−1F S FT ð29Þ

The elasticity and viscosity tensors can also be derived from the free energy functions

or stresses:

Ce ¼ 2
∂Se

∂C
¼ 4

∂2Ψe

∂C2 ð30Þ

Cv ¼ 2
∂Sv

∂ _C
¼ 4

∂2Ψv

∂ _C2
ð31Þ

The elasticity and viscosity tensors were obtained and used to arrive at the Jaumann
elasticity tensor following the procedure in [30]. The Jacobian matrix was derived ana-

lytically, resulting in a quadratic convergence rate instead of a slower convergence rate

associated with the numerical approximation of the Jacobian matrix [31,32].

Reinforcing the incompressibility condition strictly in a numerical procedure can

cause problems such as mesh locking. Therefore, a slight compressibility should be in-

troduced into the model which requires the deviatoric-volumetric decomposition of the

Helmholtz free energy [33]. For nearly incompressible materials, the decomposition

can be applied on both isotropic and anisotropic components of the energy function.

Ψ I1; I3; I4; J5ð Þ ¼ Ψvol Jð Þ þΨm �I 1ð Þ þΨf �I 4;�J 5ð Þ ð32Þ

Here, Ψm(Ī1) is the deviatoric term for the isotropic matrix, and Ψ f �I 4;�J 5ð Þ for the an-

isotropic collagen network. The invariants with bar are the invariants of the deviatoric

part of the right Cauchy-Green deformation tensor and its time derivative, which are

associated with viscoelastic behavior [34].

For the purpose of comparison, the QLV solution below was also numerically imple-

mented following a previously established procedure [27,35]

S tð Þ ¼ Se tð Þ þ
X
i

gi

Z t

0
exp − t−Tð Þ=τi½ � _SedT ð33Þ

The data fitting was performed with the least square method using the optimization

tool box in MATLAB (MathWorks, MA). Constraints on the parameters were applied

whenever applicable. For example, the material properties must be positive to ensure

the convexity of the energy functions and positive-definiteness of the elasticity tensors.
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Results
Data fit for ligaments

The tensile testing results of the anterior cruciate ligament were used to calibrate the

parameters of the constitutive model. These tests were done under near equilibrium

(1.2%/s) and three higher strain-rates of 25%/s, 38%/s and 50%/s [36]. The elastic pa-

rameters in Eqs. (12) and (13), a1, a2 and a3, were found by fitting the model to the

equilibrium data. The parameter a1 characterizes the isotropic part of the tissue, and

can be obtained from compression tests (which is, however, negligible). The data during

ramp loading were used to determine the short-term parameters. The tensile data

under 25%/s loading rate were used to find the short-term viscous parameters, a4 and a5,

which actually predicted the data obtained at the rates of 38 and 50%/s (Figure 1). The

stress relaxation response was used for characterizing the long-term viscous parame-

ters, τ1, τ2, τ3, w1, w2 and w3 (Figure 2). The stress was normalized to the peak stress

showing the decay of the stress with time after ramp loading. The evaluated parameters

of the constitutive equations are summarized in Table 1.
Data fit for articular cartilage

The constitutive model was fit to the 5-step ramp loading and relaxation data from a

uniaxial tensile experiment [37] to determine the model parameters (Eqs. 25 and 26).

In each ramp loading, a 2% tensile strain was applied at 0.15%/s loading-rate. The ramp

loading was followed by a relaxation period that was long enough for the tissue to

reach equilibrium completely. In addition, the confined compression test of cartilage

[38] was used to evaluate the stiffness of the isotropic non-fibrillar matrix of cartilage,

b1 (Figure 3). The fibers do not play a major role in the confined compression test due

to the lateral confinement of the tissue. The stiffness of the collagen fibers, represented

by b2 and b3, was determined using the equilibrium result of uniaxial tension (Figure 4).

Finally, the time-dependent response was used to evaluate the viscous parameters. The

ramp loading and stress relaxation phases were used, respectively, to evaluate the
Figure 1 The model fit for the viscoelastic responses of anterior cruciate ligament under different
strain-rates (equilibrium = 1.2%/s). The material properties used for the numerical simulations (solid
curves) were summarized in Table 1. The experimental data were reproduced from the literature [18].



Figure 2 The model fit for the stress relaxation of anterior cruciate ligament at 16% stretch. The
experimental data were reproduced from the literature [36]. The stress was normalized to the peak stress
obtained at the end of ramp loading. A rapid but continuous stress reduction is seen during early
relaxation. These data were used to characterize the relaxation parameters, τi and wi , in Table 1.
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short-term (b4) and long-term viscous parameters (τ1, τ2, τ3,w1,w2,w3). All the material

parameters are summarized in Table 2. The fit of the entire test is shown in Figure 5.
Strain-rate sensitivity

A 10% tensile strain was simulated in ligament and cartilage at strain-rates of 1%/s,

10%/s, 25%/s and 50%/s using the material properties obtained from experiments

(Tables 1 and 2). The stress response was normalized to the elastic equilibrium

stress, so that the ratios of peak stresses relative to the equilibrium stress are clearly

demonstrated (Figure 6). The proposed constitutive model produced rate-sensitive

results: the peak stress at the highest strain-rate was approximately three times of

that at the slowest strain-rate (Figure 6). The peak stress predicted by the QLV theory

(Eq. 33) was almost the same for all strain rates (Figure 7).
Discussion
The model developed in this study was able to predict the viscoelastic behavior in a

wide range of strain-rates. For instance, the material properties of ligament were deter-

mined from the experimental data obtained at 1.2% and 25%/s strain rates, but were
Table 1 The material properties of the anterior cruciate ligament found by fitting the
constitutive model (Eq. 24) to tensile experimental data

Elastic properties Short-term viscous properties Long-term viscous
properties

a2 = 2.213 × 106 Pa a3 = 3.879
(dimensionless)

a4 = 0.3653 × 106 Pa.s, a5 = 0.652
(dimensionless)

τi = 3.77, 148.24, 10987.98 s

wi = 0.154, 0.161, 0.682 s−1

(i = 1, 2, 3)

The elastic properties, a2 and a3 , were found from the near equilibrium loading (1.2%/s); and the short-term viscous
properties, a4 and a5 , were determined using the ramp loading under 25%/s strain-rate (Figure 1). Finally, the long term
viscous parameters, τi and wi, were determined from the stress relaxation data (Figure 2). The compressive property of
the ligament, a1, was neglected in the fit. All parameters were enforced to be positive to satisfy the second law of
thermodynamics. Additionally, the constraint of Σwi = 1 was also applied (Eq. 7) during the optimization.



Figure 3 The model fit for the experimental data of articular cartilage in confined compression at
equilibrium [38]. These data were used to characterize the parameters for the non-fibrillar matrix, b1 in Table 2.
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able to capture the data obtained at higher strain rates of 38 and 50% (Figure 1). The

strain-rate sensitivity during loading was characterized by the short-term viscous energy

function, which can be adequately determined from experimental data in the strain-rate

range of interest. The examples presented in the present study were among biological tis-

sues. However, the approach may be equally applicable to other viscoelastic materials such

as polymers, hydrogels and in particular to fiber-reinforced anisotropic materials.

The proposed model was also able to account for the stress relaxation response (Figure 2),

in addition to the strain-rate dependent behavior during loading discussed above. The

differential-type models have been commonly used for soft tissues such as the anterior cru-

ciate ligament [18,39,40], liver [41] and periodontal ligament [42]. They normally fail to

predict stress relaxation, and are therefore suggested to be used only for materials with

“short-time memory” [41]. This limitation was removed in our modeling by introducing

the short and long-term internal variables. The proposed evolution equation (Eq. 6) estab-

lished the connection and continuity of the short and long-term behaviors which was a key

of the approach. The relations between the short and long-term material parameters may
Figure 4 The model fit for the equilibrium stress in articular cartilage determined from the uniaxial
tensile experiments [37]. These data were used to characterize the elastic parameters, b2 and b3, in Table 2.



Table 2 The material properties of articular cartilage (Eq. 28) found using data obtained
from both confined compression and multistep tension and relaxation tests

Elastic properties Short-term viscous properties Long-term viscous properties

b1 = 0.425 × 105 Pa b4 = 190 × 106 Pa.s τi = 141.00, 3.55, 14303.43 s

b2 = 0.5 × 105 Pa wi = 0.346, 0.0709, 0.582 s−1

b3 = 14.2 × 106 Pa (i = 1, 2, 3)

The confined compressive test was used to evaluate the stiffness of the non-fibrillar matrix, b1 (Figure 3). The tensile test
consisted of 5 steps, and 2% tensile strain was applied at 0.15%/s in each step, followed by stress relaxation. The equilibrium
data at each step were used to find the elastic stiffness of the fibers, b2 and b3 (Figure 4). The short-term, b4, and the
long-term viscous parameters, τi and wi, were determined by fitting the model to the entire ramp loading and stress
relaxation data (Figure 5). All parameters were enforced to be positive. Additionally, the constraint of Σwi = 1 was also
applied (Eq. 7) during the optimization.
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also be found using the stress continuity at the end of the loading phase just prior to relax-

ation (t = δ) using Eqs. (5) and (7).

The model for articular cartilage was validated against multi-step tension-relaxation

data (Figure 5). It is necessary to examine a nonlinear model at different levels of load-

ings. The multi-step test demonstrated the nonlinearity at both transient and equilib-

rium responses, i.e. the 5 peak points should present a nonlinear curve, and the 5 end

points plus the origin should give another nonlinear curve. A quasi-linear theory may

provide a good fit to the relaxation data obtained at one strain, even large, it may fail to

account for the relaxation data obtained at another strain. This is because the reduced

relaxation function, shown as the exponential integral in Eq. (7), while being a nonlinear

function of time, rapidly losses its nonlinearity with time. Therefore, a fully nonlinear for-

mulation including strain dependent time constants may be necessary for some materials.

Fixed time constants, τi , were used to obtain example solutions for the evolution

equation (Eq. 6), which led to quasi-linearity in stress relaxation (Eq. 7). In other words,

the short-term (loading phase) response is fully nonlinear but the long-term (stress
Figure 5 The model fit for the experimental data of multi-step ramp loading and relaxation of cartilage
in tension [37]. The foregoing test consisted of 5 steps of 2% ramp tension at 0.15%/s followed by stress
relaxation. The early relaxation seems to overlap the loading phase because the time involved was very short
compared to the large time scale used for the plot. These data were used to characterize the viscous
parameters, b4, τi and wi , in Table 2.



Figure 6 The model prediction of the ramp loading and relaxation for the ligament under 15%
tensile strain at the strain rates of 1, 10, 25 and 50%/s. The ligament tissue properties were determined
from experimental data (Table 1).
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relaxation) response is quasi-linear. These simple examples were used to demonstrate the

approach of using short and long-term internal variables without adding much complexity

to the formulation. However, this limitation can be removed by introducing strain

dependent time constants for a better description of the stress relaxation [43] especially at

large deformation [44]. Although articular cartilage is often modeled using the quasi-

linear QLV theory [45,46], nonlinear theories were shown to be more accurate in fitting

the experimental data at different strain-levels [47].

The differential-type viscoelastic modeling approach, often used in modeling ligaments,

was extended for articular cartilage in the present study after anisotropic fibril-

reinforcement was included in the general framework. The strain-rate sensitivity of the

proposed model, however, was not examined for cartilage because of limited availability of
Figure 7 The model prediction of the ramp tension and relaxation for articular cartilage under 10%
tensile strain at various strain rates using a model from the literature (Eq. 33). The predicted peak
stress was almost the same for all strain-rates. The material properties were adopted from the literature [27]:
gi (i = 1, 2, or 3) were 0.870, 0.036 and 0.273 (dimensionless) respectively; and τi were 10, 100 and
1000 seconds respectively.
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tensile data for articular cartilage. The strain-rate dependent load response of cartilage in

tension was only investigated in one study using strain-rates of 20, 50 and 70%/s [48]. The

tensile modulus was found to increase substantially from the rate of 50%/s to 70%/s.

Unfortunately, it was not convenient to use the modulus data to fit the stress in our model-

ing. Our short-term viscous function for articular cartilage was calibrated using the available

experimental data with no variable strain-rates. However, the model should be able to de-

scribe the strain-rate dependence of cartilage in tension due to similar tensile load-bearing

mechanism in cartilage and ligament. Also for the reason of limited data availability for the

strain-rate dependent response, the model capacity in describing hysteresis was not exam-

ined in the present study.

The proposed constitutive model can also be applied to strain-rate insensitive visco-

elastic materials using the concept of pseudo-elasticity [1]. The pseudo-elastic function

used previously predicted the short-term response well, but failed to describe the stress

relaxation. A strain-rate insensitive integral-type viscoelastic model was introduced for

linear materials only [49]. Within the framework of the present constitutive modeling,

the short-term energy function can be replaced with a pseudo-elastic energy function

with no or little dependency on strain-rate. This approach would predict the short-

term response while at the same time accounting for the stress relaxation.

A major limitation of the present study was limited experimental validation. Only a few

simple tensile and compressive tests were used for the curve fit. Loading and unloading

scenarios need to be examined to determine the model capacity in describing the hyster-

esis of viscoelastic materials, as it was successfully done with periodontal ligaments [50].

Biaxial tensile tests may be further used to characterize the model parameters as they may

reveal different tensile properties [51], as compared to uniaxial tensile tests. Moreover, the

proposed methodology requires separate viscous functions for short-term and long-term

responses, which may potentially introduce more model parameters that require various

types of test data for the unique determination. A statistical analysis on multiple data fits

needs to be performed in order to gain more confidence on the material properties.
Conclusions
A general constitutive modeling methodology was developed based on the short and

long-term internal variables, and examples of anisotropic visco-hyperelastic constitutive

models were used to demonstrate the framework. Anisotropic fibril-reinforcement was

implemented in order to make it applicable for articular cartilage. The experimental data

of ligament and articular cartilage were used to characterize the model parameters. It was

found that using both the short and long-term internal variables enhanced the capability

of the models to predict both short- and long-term mechanical responses of the tissues

especially loaded at high strain-rates. The present study also demonstrated the necessity

of fitting multiple model parameters using multiple tissue tests, e.g. using confined com-

pression, simple tensile and multi-step tension-relaxation tests for articular cartilage. The

material properties thus determined are more reliable although requiring more test data.

Further experimental data are required to validate the material properties presented. The

fully validated constitutive models may be used in patient-specific modeling of knee joint

to determine the loading rate dependent mechanical function of the joint that is repeat-

edly subjected to high speed loadings in physiological conditions.
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