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Abstract
Background: Measurements of auto and cross covariance functions are frequently used to
investigate neural systems. In interpreting this data, it is commonly assumed that the largest
contribution to the recordings comes from sources near the electrode. However, the potential
recorded at an electrode represents the superimposition of the potentials generated by large
numbers of active neural structures. This creates situations under which the measured auto and
cross covariance functions are dominated by the activity in structures far from the electrode and
in which the distance dependence of the cross-covariance function differs significantly from that
describing the activity in the actual neural structures.

Methods: Direct application of electrostatics to calculate the theoretical auto and cross
covariance functions that would be recorded from electrodes immersed in a large volume filled
with active neural structures with specific statistical properties.

Results: It is demonstrated that the potentials recorded from a monopolar electrode surrounded
by dipole sources in a uniform medium are predominantly due to activity in neural structures far
from the electrode when neuronal correlations drop more slowly than 1/r3 or when the size of the
neural system is much smaller than a known correlation distance. Recordings from quadrupolar
sources are strongly dependent on distant neurons when correlations drop more slowly than 1/r
or the size of the system is much smaller than the correlation distance. Differences between bipolar
and monopolar recordings are discussed. It is also demonstrated that the cross covariance of the
recorded in two spatially separated electrodes declines as a power-law function of the distance
between them even when the electrical activity from different neuronal structures is uncorrelated.

Conclusion: When extracellular electrophysiologic recordings are made from systems containing
large numbers of neural structures, it is important to interpret measured auto and cross covariance
functions cautiously in light of the long range nature of the electric fields. Using recording
electrodes that are bipolar or quadrupolar minimizes or eliminates these effects and hence these
electrodes are preferred when electrical recordings are made for the purpose of auto and cross
correlation analysis of local electrical activity.
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1. Background
Recordings of spontaneous or evoked electrical activity
from large groups of neurons are often used to probe the
function of neural systems. One fundamental problem
that arises in interpreting such data is finding the location
the generators of specific electrical patterns from record-
ings made at a distance from the sources. This "inverse
problem" does not have a unique solution [1,2] since
there are localized charge distributions such as the closed
dipole sheet that do not produce electric fields outside the
region containing the sources [3] and hence do not
change the measured potential. However, if additional
restrictions can be placed on the types of source distribu-
tions that are realistic, a unique solution may be found [4]
in certain cases. The most common set of simplifying
assumptions is that the source consists of a single or very
few dipoles but this assumption may not be reasonable if
there are strong correlations between distant neurons.
Because of the difficulties inherent in solving the "inverse
problem", it is very important to obtain insight into this
problem through an understanding of the "forward prob-
lem" of predicting the electric fields generated by various
known generators.

The primary goal of this paper is to consider the "forward
problem" of computing the fields generated by large num-
bers of correlated neural structures with the specific intent
of understanding those features of the generator, record-
ing electrode, and neuronal correlation function which
determine whether recordings of electrical activity are
dominated by neurons near the electrode or neurons far
from the electrode. From the outset, it should be noted
that this problem is very different from that of determin-
ing the distribution of fields generated by individual
sources. Even in that simple problem there are "near field
potentials" such as the quadrupolar fields generated by
travelling action potentials [5] which are highly peaked
near the source and "far field potentials" which can vary
more slowly than 1/r at large distances from the source
[5]. In this paper, only sources associated with traditional
"near field potentials" will be considered. The secondary
goal will be to demonstrate the effect that long range
nature of electrostatic fields has on the cross covariance
between the signals recorded from electrodes separated by
a given distance.

Specifically, in this paper, the auto and cross covariance
functions for signals recorded from electrodes immersed
in a large continuous medium of neural elements will be
considered. Since the goals of this paper are qualitative
rather than quantitative, a very simplistic model system
will be studied in which a group of very small recording
electrodes is placed at the center of a very large homoge-
neous spherical region containing identical neural struc-
tures. The dependence of the field recorded from these

electrodes on the radius of the spherical region will be
taken as an indicator as to whether there is a significant
contribution to the recorded potential from neurons far
from the electrode. The measured cross covariance func-
tion will be compared with the actual cross covariance of
activity in spatially separate neural structures.

2. Methods/Results
2.1 The paradox

Consider the situation in which a small electrode of radius
a is placed in a homogeneous spherical region of radius R
filled with uniformly distributed neural generators. One
goal of this paper will be to compute the cross covariance

function: νaR ( , , τ) which represents the cross covari-

ance between signals recorded from two electrodes one

located at position  and another located a distance 

away from the first as a function of a, R, τ(time difference)
and the assumptions about the correlation between neu-
ral generators throughout the medium. Also of interest

will be a study of νaR (τ) = νaR (0,0, τ) which is the autoco-

variance function for signals recorded from the center of
the spherical medium as a function of R. Situations in

which the value of  does not exist suggest that

under these conditions, recordings will be dominated by
contributions from distant neurons and will be strongly
dependent on the size and shape of the region in which
the electrode is immersed. The core of the problem can be
easily illustrated in a simple argument reminiscent of that
which leads to Olber's paradox. If the potential from a set
of neural sources a distance r from an electrode falls as

 the net contribution to the potential from all neural

sources in a spherical shell located at distances between R

and R + ΔR from the electrode will be proportional to

. If m is less than or equal to 2 each succes-

sively more distant shell of sources contributes either a
greater or equal amount to the total potential and hence
the recorded potential is very sensitive to the exact shape
and size of the neural region. When m = 3, the contribu-
tion from each successively more distant shell diminishes

as  but the total potential diverges logarithmically and

so, even in this case, it is expected that the recorded poten-
tial will be strongly dependent on the shape and size of
the volume in which the recording electrode is placed.
Only when m > 3 does the measured potential reach a
finite limit for large values of R and hence most of the
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electrical activity recorded can be considered to come
from neurons near the electrode. This result suggests that
when recording from highly correlated dipolar or quadru-
polar sources most of the electrical activity recorded from
an electrode comes from neurons far from the electrode.
This paradoxical result arises out of the implicit assump-
tion that neuronal activity is highly correlated even at
large distances. The following discussion will demonstrate
how the above result depends on the details of the corre-
lation function describing activity in spatially separated
neurons.

2.2 The multipole expansion

The general expression for the electric potential produced

at the location of the electrode  is:

where V is the spherical volume of radius R and ρ( ', t) is

the charge density at the point ' and time t. Consider the
contribution to the total potential made by the generators

in a small element of space  centered around the

point 1. This is given by:

This expression can be rearranged to display the potential
in terms of the multipole expansion of the charge density
in the region by using the relation [3]:

where the angles (θ", φ") describe local coordinates (i.e.

orientation of ") within , (θ1, φ1") describe the ori-

entation of the region  in relation to the origin of

coordinates, and it is assumed that the region of interest is
smaller in its maximum diameter than the distance
between the origin of coordinates and the region. The Ylm

(θ, φ) are spherical harmonics and  (θ, φ) are their

complex conjugates. Substituting (3) into (2) demon-
strates that the total contribution to the potential from

sources in the region  can be written as:

where

Qlm is the average multipole moment per unit volume at

1 and time t (ie the multipole moment density). It is

important to understand the appropriate choice of the
volume. It should be chosen to be large enough that each
volume consists of a very similar collection of neural ele-
ments but small enough that its leading multipole
moments are similar each time the region is activated.
This restriction can be relaxed greatly without altering the
underlying conclusions of this study if one considers the
fields generated by coupled neural structures of different
types. The total potential will simply be the sum of the
potentials generated by the structures of each type.

Integrating (4) over all the volume elements in the sphere
system yields the following expression for the total
recorded potential as:

where (θ1, φ1) are the angles describing the location of the
element under study relative to the center of the coordi-
nate system. The advantage of this expansion over (1) is
that in many neural systems the fields generated are dom-
inated by either quadrupolar (l = 2) or dipolar (l = 1) com-
ponents and so only theses components of the above sum
are of practical importance.

2.3 The covariance function

One of the most commonly used descriptors of spontane-
ous electrical activity is the cross-covariance function. The
goal of this section is to relate the patterns of multipole
moment activation to the covariance between the signal
recorded by an electrode of radius a and a similar elec-

trode a distance  from the first electrode embedded in
spherical volume of radius R. One standard definition of
the cross covariance function is:

where the following notation is used:

for any function of time f(t). Substituting (6) into (7)
yields:
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where V is now taken as the region bounded by the surface
of both electrodes and the sphere of radius R which
bounds the region filled with neural structures.

One very important simplification occurs when it can be
assumed that the structure of each neural region remains
constant over time and that the fluctuations in neural
activity over time in each region just modify the magni-
tude of the multipole moments over time. In particular,
this means that it is possible to write:

where �lm( 1) gives the magnitude of the maximal

multipole moment generated when each region is fully

activated and σ( 1, t) is a scalar function describing the

degree of activation of neural elements at position 1 at

time t. Note that in this representation, the orientation of
a specific multipole moments is specified by the relative
weights of the moment for the different values of m for a
given value of 1 and so this theory also allows for arbitrary
variations of the multipole moments from location to
location. This means that:

Substituting into (10) yields:

where:

is the paired covariance between the level of activity in dif-
ferent regions of the neural network. It should be noted
that the covariance has been assumed to depend only on
the distance between the regions and the location of one
of the regions.

Before passing onto the more general case discussed in
Appendix B, it is instructive to consider the case in which
the level of activation at in each region is totally uncorre-
latated:

for any function h( 1, τ). This implies that:

In Appendix D, the situation where  is not zero is dis-

cussed, but in the case where both  =  = 0:

The next simplification comes when dividing the volume
integral into its radial and angular components:

Defining:

it is possible to write:

Now, the angular integral in (17) is over a finite region

and since the � and h( 1, τ) are bounded then so is

qll'(| 1|, τ). Let:

then:

Note that since the sources are either dipolar or quadrupo-
lar then:

qll' (| 1|, τ) = 0 unless l = l' = 1 or 2

so that l+l'-l > 1. This means that as R increases without
limit the covariance function remains bounded by the
quantity:
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which is finite. Thus, contributions to the autocovariance
function from neural structures far from the electrode are
small when the activity in different regions is not corre-
lated and as expected from the prominent appearance of
the radius of the electrode, a, is mainly determined by
neural structures near the electrode. This conclusion is not
influenced by the orientation or the distribution of
multipoles within the volume as long as the multipole
density remains finite.

In Appendix A, the signal autocovariance function νaR (τ)
is computed for a more general covariance function for
integer values of p:

Although this mathematical argument is more complex,
the conclusion is that quadrupolar (l = 2) sources far from
an electrode will not significantly contribute to the signal
covariance function as long as pmin > 0 and pmax is finite.
For dipolar sources (l = 1) the neuronal correlation func-
tion, the autocovariance function in general does not have
a defined limit as R → ∞ for correlation functions of the
form (21) with pmax < 3 as required for convergence of the
integrals required for computation of the autocorrelation
function.

It is also possible to estimate the dependence of the cross
covariance function on the distance between the record-
ing electrodes. In Appendix C it is demonstrated that, in
the case where the activity in various neural structures is
uncorrelated (i.e. source correlation function of the type
(14)), if the sources are dipolar (l, l' = 1) then

. If the sources are quadrupolar, then l, l'

= 2 and . The critical observation is that

even when the activity in the neural structures is uncorre-
lated, the measured cross covariance functions decline as
power-law function of the distance between the electrodes
and do not display the expected delta function behavior.

Furthermore, as shown in Appendix D, when the neuro-
nal correlation function is of the power law form and the
neuronal structures produce a predominantly dipolar
field, the measured correlation declines more slowly with
distance than the neuronal correlation function. In the
setting of quadrupolar sources, the measured cross covar-
iance function has the same dependence on the distance

between the electrodes as the neuronal correlation func-
tion.

2.4 More complex recording electrodes
The arguments presented above and in Appendix A for-
mally refer to recordings from a monopolar electrode.
However, as demonstrated in Appendix B, similar conclu-
sions can be drawn for a complex electrode whose poten-
tial is the linear combination of the potentials at a
number of other electrodes. In particular, in Appendix B,
it is demonstrated that bipolar recording of dipolar
sources is equivalent to monopolar recording of quadru-
polar sources. Thus, although monopolar recordings from
highly correlated dipole sources (as characterized by 0
<pmin ≤ 2 in equation (21)) are dominated by sources dis-
tance from the electrode, bipolar recordings from such
highly correlated dipole sources receive the largest contri-
bution from sources close to the electrode. Thus, the
recordings from different electrodes can be vastly different
when they are recording from extended neural structures
with long-range correlations.

2.5 The qualitative argument
In order to obtain a qualitative understanding of these
mathematical arguments, it is helpful to return to the orig-
inal argument of section 2.1. From the discussion above,
it is clear that that the key element left out of the original
argument was the finite range of neuronal correlations. It
is instructive to consider a very crude qualitative argument
which takes into account these finite range effects. Assume
that the neural system can be divided up into discrete ele-
ments of volume v0 and label each element with the index
i, then the recorded potential can be written:

where �0 is the moment associated with each element, ri
is the distance of the i' th element from the electrode, σi
reflects that state of activation of the i'th element and N is
the total number of elements:

where R is the radius of the neural system. In order to esti-
mate the potential, it is reasonable to note that most of the
distances, ri, are on the order of R so that:

The signal variance is given by:
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Defining:

the term:

where Nc is the number of other elements with which the
given element is correlated. If the correlation distance is
RC, then:

since the number of elements correlated with a given ele-
ment can never be larger than the total number of ele-
ments in the system. Thus:

so that:

This qualitative argument suggests that recordings from
dipole sources m = 2 are strongly dependent on the size of
the neural system when the size of the system is much
smaller than the correlation distance but is stable to
changes in R when the system is much larger than the cor-
relation distance. The recorded signal from quadrupolar
sources m = 3 is independent of R only for the large sys-
tems while those from higher order moments m ≥ 4 are
always independent of R.

3. Discussion
The first result of this paper is that when there are strong
long-range correlations between neural structures, the

potential recorded at a monopolar electrode can be dom-
inated by the activity in neural structures far from the elec-
trode even if the potential from each group of neurons is
of the "near field" type (declining as 1/r2 or faster).

Specifically, when the correlations have a finite range RC,
dominant contributions come from the distant neurons
when the size of the system, R, is much smaller than RC.
In the case where the underlying neuronal correlation
functions have a power law dependence on the distance,
it was found that when the correlation between electrical
activity in different neuronal structures declines more
slowly than 1/r3, the autocovariance function of the
recorded signals from a monopolar electrode is domi-
nated by activity from distant dipolar generators. Record-
ings from quadrupolar generators are dominated by
neurons near the electrode as long as the correlation
between the activity in neuronal structures decreases as 1/
rε with ε > 0. Another important observation is that
recordings of dipolar sources from bipolar electrodes have
similar dependences on the size of the neural system as do
monopolar recordings from quadrupolar sources. Thus,
when there are long range correlations between the activ-
ity in neurons, it is possible that there may be major qual-
itative differences between the recordings made from pure
monopolar and bipolar electrodes. This observation may
have practical importance for the selection of the best
electrodes for recording events associated with long-range
correlations such as seizures or in finding the best elec-
trodes with which to perform coherence analysis [9].

The second result of the analysis performed in this paper
is the fact the dependence of the cross covariance of the
electric potential recorded from physically separated elec-
trodes has a very different distance dependence than the
cross correlation function describing the activity in differ-
ent neural structures. This is true for both dipolar and
quadrupolar sources if the activity in the different neural
structures is uncorrelated. However, when the underlying
source correlation function has a power law structure, the
measured cross covariance function is similar to the
underlying neuronal correlation function when the
sources are quadrupolar but decay more slowly with dis-
tance than the neuronal correlation function when the
sources are dipolar. This, in conjunction with above dis-
cussion of the effect of different electrode types, suggests
that recording with bipolar electrodes for studies of cross
covariance functions will provide a better estimate of the
underlying neuronal cross correlation function than
recordings with monopolar electrodes.

The principles set forth in this paper are of interest only if
there are actually long range correlations in real neural
systems. Clear data on the range of neuronal correlations
in humans is limited but coherences between widely sep-
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arated parts of cortex have been demonstrated [7] using
monopolar electrodes. In addition, the "global wave" the-
ory of cortical oscillations proposed by Nunez [6] is based
on estimations of length of cortico-cortical fibres in
humans extending up to 10–20 cm. This estimate is sim-
ply the range of the connections between neurons. The
actual spatial extent of correlations can be much longer.
Neckelmann [10] has demonstrated correlations between
neurons in cat brain decrease very slowly as a function of
distance, extending beyond 1 cm and that the spatial
extent of this correlation increases during seizures. Also, it
should be noted that in simple statistical models of sys-
tems near critical points such as the Ising model with only
nearest neighbor couplings, the correlation between spins
separated by a distance R varies (in 3 dimensions) as

 near the critical point where η ≈ 0.028 [8]. This pro-

vides additional evidence for the likelihood that neural
elements cold be synchronized over large distances espe-
cially when there are large scale coherent oscillations such
as during a seizure.

It should be noted that, in actual applications, raw
unprocessed data from electrodes is rarely used and a
number of techniques are used to extract data that is con-
sidered most relevant for the particular application. One
of the most common signal processing techniques is high
pass filtering of the data. As described in a previous paper
[5], the potentials from a quadrupolar sources moving at
constant velocity such as those accompanying an action
potential have a distance dependent power spectrum with
the signal containing progressively lower frequencies as
the distance between the source and recording electrode
increases. Thus, if a fixed high pass filter is used, the actual
contribution from moving quadrupoles (but not quadru-
polar sources with fixed spatial location and varying
intensity) may drop off faster than predicted by the model
used in this paper and hence there is a reduced likelihood
of contributions from distant structures to the recorded
potential. However, dipolar sources typically occur at syn-
apses, bends in axons, or regions where there is a change
in axon diameter [5] and do not propagate. Hence, in neu-
ral systems dipole sources are generally in fixed positions
and the result obtained in this paper is more likely to
apply. Of course, there are a great number of other signal
processing techniques that can be used to extract specific
elements of the recorded signal and may be used to
enhance the contributions from various structures if there
is a priori information that distinguishes the recordings
from these different structures.

4. Conclusion
Recordings of electrical activity from extended neural
structures such as a brain are commonly used to under-
stand the basic mechanisms underlying various brain
functions. One critical question is whether the electrical
activity that is recorded from an electrode comes from
generators near the electrode or generators far from the
electrode. The distinction between "near field" and "far
field" potentials was introduced to describe situations in
which a localized generator may produce responses that
either decline very quickly or very slowly with distance
from the generator. However, even if a single localized
generator contributes minimally to the recorded electrical
activity, the resultant effect of many correlated neurons
distributed over a large region of space may be significant.

In this paper, it is demonstrated that for dipole sources in
a uniform medium, the recorded potential is strongly
dependent on the neurons far from the electrode when
neuronal correlations drop more slowly than 1/r3 or when
the size of the neural structure is much smaller than a
known correlation distance. Recordings from quadrupo-
lar sources are strongly dependent on distant neurons
when correlations drop more slowly than 1/r or the size of
the system is much smaller than the correlation distance.
Bipolar recordings from dipolar sources produce
responses that have the same properties of quadrupolar
sources and bipolar recordings of quadrupolar sources are
always dominated by local generators.

In addition, it is demonstrated that the cross covariance
functions computed from recordings of electric potential
in extended neural systems do not reflect the underlying
neuronal correlation function when correlations between
neural generators are very short range. However, when the
correlations between different neural regions decline as a
power law function of distance, the measured cross covar-
iance function declines more slowly with distance when
the sources are dipolar. When the sources are quadrupo-
lar, the recorded cross covariance function has similar dis-
tance dependence as the neuronal correlation function.
This suggests that bipolar electrodes should be used for
recording cross covariance functions in the setting of pri-
marily dipolar sources.

Appendix A-Power law neuronal correlation 
functions
The purpose of this appendix is to derive expressions for
the autocovariance function of the recorded signal for a
general class of neuronal correlation functions. As derived
in the main text, the general relationship between the neu-

ronal covariance function g( 1 - 1', 1, τ) and the signal

autocovariance function νaR(τ) is (13):

1
1R +η

x x x
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Specifically, the dependence of νaR (τ) on R will be studied
as a function of pmin for covariance functions of the form:

for some integers pmax and pmin > 0. It is important to real-
ize that the degree to which the spatial extent of the cov-
ariance is strongly dependent on the value of pmin. If pmin
is zero, the correlation extends over all spaces and
decreases more quickly with distance as the value of pmin
increases. It is also important to note that pmax must be
less than 3 or else the integrals to be discussed below do
not converge. Although a more general expression in
terms of Gegenbauer polynomials is possible for non-
integer values of p, attention will be focused on the case
where p is restricted to integer values. In this case, equa-
tion (3) can be used to write:

Defining:

the expression for the autocovariance function becomes:

The first step is to look at the upper bound for the autoco-

variance function. There must be a function (p, l, l',

L1,...Lp, τ) satisfying:

since the integral defining G is over a bounded region and
the integrand is finite everywhere as long as p is finite.
This implies that

in order to simplify the calculations let | 1| = r,| '1| = r'

and define . It can be seen that the dependence

of the covariance function on R will be determined by the
integrals:

Evaluating this integral is straightforward but tedious with
the result:

And analogously

It is reasonable to assume that all sources are either dipo-
lar or quadrupolar in order to simplify the calculations.
Because of this, it is possible to set l = l'. The above inte-
grals suggest that the responses for large R are convergent
if:

4-p-2l < 0  (32)
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This implies that, for dipolar sources for p > 2 and for
quadrupolar sources p > 0 guarantee convergent responses
for large R or in other words that the recorded signal is
dominated by the contribution of nearby neural struc-
tures. Since p must be less than 3 or else the integrals do
not converge, this demonstrates that, although there may
be specific exceptions, in general with dipolar sources and
power law correlations, the autocovariance function is a
strong function R. It should be noted that this argument
provides only a maximum bound on the autocovariance
function and hence does not prove that the autocovari-
ance must be extremely sensitive to the value of R outside
the range of parameters discussed above. It is possible,
however, in one special case to demonstrate the sensitivity
to the value of R outside the above restrictions on p. Con-
sider the specific case p = 1, l, l' = 1 where in addition:

Orthogonality of the spherical harmonics implies:

so that:

which diverges for large R. This solution is exact proving
that for uniform dipole densities and p = 1 the autocovar-
iance function does strongly depend on R, the size of the
neural system.

Appendix B–Responses recorded from 
multipolar electrodes
It is easy to extend the results to the case of bipolar or
more complex recording electrodes. Consider a multipo-

lar electrode in which the recorded potential ϕs ( , t) is a

linear combination of the potentials at a number of loca-
tions:

where the  are the vectors pointing from the geometric

center of the electrode to each of the c locations where

recordings are made . The εi are the weights

determining how much the potential from each location
contributes to the total recorded potential, recorded
potential, Substituting the result (6) into (1) gives:

so that:

This demonstrates that the arguments used above apply
equally to recording from complex electrodes as well as to
simple single electrodes by use of the modified multipole

moments Qlm'( 1, t).

The second important question is how does the use of a
complex electrode change the recorded potentials from
electric multipoles. First, it is well known3 that the lowest
order non-vanishing multipole moment of any charge
distribution is independent of the origin of coordinates.
Now, in (39) it can be seen that the effect of recording

from different electrodes  is essentially equivalent to a

change in the origin of coordinates in the computation of
the multipole moment and so does not affect the lowest

order moment. This means that as long as  the

lowest order multipole moment disappears. Thus, for
example, a bipolar recording from dipolar sources are
dominated by the l = 2 terms in the multipole expansion
and bipolar recordings of the quadrupolar sources are
dominanted by the l = 3 terms.

Appendix C–Evaluation of the cross covariance 
function
In order to determine the cross covariance, it is necessary
to evaluate:
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Consider the case  = 0:

Note that:

and so:

when | | > a. If we consider r->infinity and since l, l' > =
1 we get and a- > 0:

Now let:

then we have:

So that for instance if the sources are dipolar (l, l' = 1) then

. If the sources are quadrupolar, then l, l'

= 2 and so . This indicates that even

when the neuronal cross covariance is a delta function, the
measured cross covariance depends inversely on the dis-
tance between the electrodes.

Appendix D-Qualitative estimate of the distance 
dependence of the cross covariance function
The purpose of this appendix is to present a simple quali-
tative argument illustrating the relationship between the
cross covariance function of a simple scalar source distri-
bution and the cross covariance function of the recorded
electrical potentials. Consider the situation in which the
relationship between the potential and the sources is
given by:

where f(  - ') is the function that determines how the

presence of an active generator at position ' influences

the potential at . In the ensuing calculations, it will be
much simpler to deal with sources that are uniformly dis-
tributed than to be concerned about the details of how
sources are distorted by the presence of an electrode of
finite size. In what follows, the view will be taken that

near the electrode ρ( ) is constant but:

If the covariance function describing activity in different
neural structures is given by:

it is possible to use (47) and (48), to write the cross cov-
ariance of the recorded signal is:
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since f - ( ) = ± f( ). Consider the scaling behavior as a
function of s:

where d = 3. If:

(ie the correlations between neural structures declines as

| |P) for some number p, it is possible to write:

Because of the restriction (47), there can be no exact rela-
tion of the form:

However, if:

for some function h and a number q:

Thus:

If | | >> a then α([ 1" - 2" - ]) ≈ α( ) since the larg-

est contributions will come from values of | 1"|, | 2"|

near a and so:

It is possible to estimate the last integral as:

if h( ) ≈ h0| |q ; | | <a. Thus:

In the case d = 3 and q = -2 (dipole sources) then:

Although this equation is complex, it is clear that if only
the first term is considered, then

If only the second term is studied for large values of ε,
then:

In either case, the recorded cross covariance function

decays slower with | | for large distances between the

electrodes than the neuronal correlation function α( ).
For q = -3 (quadrupole sources):

Since the logarithm of ε is a very slowly varying function,
the measured cross correlation function scales very nearly
as the neuronal correlation function.
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