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Abstract
Background: Biological mass transport processes determine the behavior and function of cells,
regulate interactions between synthetic agents and recipient targets, and are key elements in the
design and use of biosensors. Accurately predicting the outcomes of such processes is crucial to
both enhancing our understanding of how these systems function, enabling the design of effective
strategies to control their function, and verifying that engineered solutions perform according to
plan.

Methods: A Galerkin-based finite element model was developed and implemented to solve a
system of two coupled partial differential equations governing biomolecule transport and reaction
in live cells. The simulator was coupled, in the framework of an inverse modeling strategy, with an
optimization algorithm and an experimental time series, obtained by the Fluorescence Recovery
after Photobleaching (FRAP) technique, to estimate biomolecule mass transport and reaction rate
parameters. In the inverse algorithm, an adaptive method was implemented to calculate sensitivity
matrix. A multi-criteria termination rule was developed to stop the inverse code at the solution.
The applicability of the model was illustrated by simulating the mobility and binding of GFP-tagged
glucocorticoid receptor in the nucleoplasm of mouse adenocarcinoma.

Results: The numerical simulator shows excellent agreement with the analytic solutions and
experimental FRAP data. Detailed residual analysis indicates that residuals have zero mean and
constant variance and are normally distributed and uncorrelated. Therefore, the necessary and
sufficient criteria for least square parameter optimization, which was used in this study, were met.

Conclusion: The developed strategy is an efficient approach to extract as much physiochemical
information from the FRAP protocol as possible. Well-posedness analysis of the inverse problem,
however, indicates that the FRAP protocol provides insufficient information for unique
simultaneous estimation of diffusion coefficient and binding rate parameters. Care should be
exercised in drawing inferences, from FRAP data, regarding concentrations of free and bound
proteins, average binding and diffusion times, and protein mobility unless they are confirmed by
long-range Markov Chain-Monte Carlo (MCMC) methods and experimental observations.
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Background
Transport of mass, energy, and momentum has a crucial
role in many branches of science and engineering. In bio-
logical systems, transport phenomena are central to the
biological processes that take place in different parts of
organisms. They determine the behavior and function of
cells, tissues, and organs, and regulate interactions
between synthetic agents (e.g. drugs) and recipient targets.
These phenomena are crucial elements in the design and
use of biosensors, high density cell culture, filtration units
for kidney dialysis, heart-lung bypass machines, and
membrane oxygenators in human medical care and ion
selective electrodes, pH-meters, electrical conductivity
meters, and time domain reflectometery used in biosys-
tem analysis. Transport processes are critical in the
removal of toxins from the blood, remediation of
impaired water bodies (sources of waterborne diseases),
and bioremediation of contaminated landscape [1,2].

Fluorescence Recovery after Photobleaching (FRAP) is one
of the most widely used experimental protocols to study
biological transport processes such as diffusion and reac-
tion [3-30]. FRAP is a straightforward technique used to
monitor the movement of fluorescence molecules. These
molecules can absorb light of one wavelength (blue for
instance) and emit light of another (e.g. green). However,
if exposed to repeated cycles of excitation-emission, they
lose their ability to emit fluorescence. This phenomenon
is called "photobleaching" or "photochemical bleaching" [24].
In this technique a small region of living cell containing
Green Fluorescent Protein (GFP)-tagged protein is
exposed to a brief but intense laser beam, produced by a
laser scanning confocal microscope, to irreversibly inacti-
vate fluorescence emission in that region. Before exposure
to the light, the living cell is in equilibrium with a uniform
population of fluorescence [25]. Photobleaching creates
two different populations of fluorescence molecules,
which are spatially separated at the beginning of the
experiment. Unbleached molecules from the undisturbed
area move toward the bleached region and the rate of flu-
orescence recovery is measured as a function of time. The
result is a noisy graph known as a recovery curve. How-
ever, because of the noise, the original graph by itself is
not suitable for quantitative study of the dynamics of liv-
ing cells. The FRAP community generally uses a data proc-
essed normalized average fluorescence recovery curve that
has less noise. By analyzing the recovery curve, one can
quantify how many fluorescent photons return to the
bleached area in comparison to the amount of light that
was there before photobleaching. This is known as percent
recovery. The other question that can be addressed is that
of how fast the fluorophores move toward the bleached
area. This is a measure of the free molecular diffusion coeffi-
cient of the bio-macromolecule under study.

One of the first attempts to estimate bio-macromolecule
mass transport and binding rate parameters using in vivo
information was carried out by Kaufmann and Jain [13].
Sprague et al. [25] developed a diffusion-reaction model
to simulate FRAP experiment but the solution is in
Laplace space and requires numerical inversion to return
to real time. The model presented recently by Lele et al.
[26] properly respects cell boundaries but is in the form of
a Fourier-Bessel series and can suffer from Gibbs phenom-
ena. Carrero et al. (2003, 2004) presented an excellent
review on the effects of boundary conditions, influence of
the membrane, and the location of the photobleaching on
the estimation of diffusion coefficients for diffusing bio-
molecules in a bounded domain [24,28]. They showed
that overestimations or underestimations can result from
ignoring this influence [24]. Beaudouin et al. [29] used a
diffusion-reaction models to study mobility of five chro-
matin-interacting proteins inside living cells. They found
that transient interactions are common for chromatin
proteins. Individual proteins locally sample chromatin for
binding sites rather than diffusing globally followed by
binding at random nuclear positions. They concluded that
complementary procedures are needed to measure tran-
sient biochemical interactions in living cells.

Although experimental methods are representative of the
biological system, they are expensive, tedious and time-
consuming. An alternative approach is to use mathemati-
cal modeling. In this regard, several sophisticated mathe-
matical models have been developed to predict and
simulate the fate and transport of drugs and bio-macro-
molecules in biological systems. However, the use of these
models is not an easy task since they contain numerous
parameters that need to be determined before the
model(s) can be used for the considered situation. The
success of model predictions depends largely on the
proper representation of relevant processes, uncertainty in
model parameters [31,32], and parameter identification
which is a critical step in the modeling process. Difficul-
ties in model calibration and parameter identification are
quite common in modeling mass transport problems in
biological systems [1,30].

The main objective of this paper is to develop a mass-
lumped Galerkin-based finite element model (FEM) to
solve a system of two partial differential equations gov-
erning protein transport and binding in living cells and
couple it with the Osborne-Moré [33,34] extended ver-
sion of the Levenberg-Marquardt [35,36] algorithm and
an experimental data set, obtained by the Fluorescence
Recovery after Photobleaching (FRAP) technique, to
quantify bio-macromolecule diffusion coefficient and
binding rate parameters. The applicability of the devel-
oped FEM-based inverse modeling strategy is illustrated
by simulating the mobility and binding of GFP-tagged
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glucocorticoid receptor in the nucleoplasm of mouse ade-
nocarcinoma.

Methods
Direct problem
A one site-mobile-immobile model was selected as the
direct (forward) problem to describe bio-macromolecular
diffusion inside living cell in cylindrical coordinate sys-
tem [1,30]:

Since a circular bleach spot was used to bombard the cell
and to track the fluorescently tagged biomolecules inside
bleach spot during the time course of a FRAP experiment,
system (1) was written in cylindrical coordinate system.

Furthermore, the binding reaction was modeled by pri-
mary rate kinetic or single binding site model
[1,13,25,26,30]:

subject to the following initial and Neumann boundary
conditions:

where F is the concentration of free biomolecule, S is the
concentration of vacant binding sites, C is the concentra-
tion of the bound complex(C = FS), DF is the molecular

diffusion coefficient (L2T-1) of free biomolecule, Ka is the

free biomolecule-vacant binding site association rate coef-

ficient (T-1), Kd is dissociation rate coefficient (T-1),  =

KaS is the pseudo-association rate coefficient, ρ is radial

coordinate (L) in the cylindrical coordinate system, w is
the radius of the bleached area, R is the length of the spa-

tial domain, and Feq and Ceq are equilibrium concentration

of F and C [25,30]:

The initial condition implies that photochemical bleach-
ing inactivates the fluorescence tag on the biomolecules in
the bleached area but does not change the concentrations
of free and bound biomolecules or vacant binding sites.
The boundary conditions imply that the diffusive biomol-
ecule flux is zero at the center of the bleach spot and at the
cell or nucleus membrane during time course of a FRAP
experiment [30].

The forward problem was solved by the finite element
method. The weak formulation of the dependent varia-
bles F and C were approximated using piecewise linear
approximating functions [1,31,37-39]:

in which N is total number of nodes in the spatial
domain, ϕj(ρ) are the selected linear basis functions, and
Fj(t) and Cj(t) are the associated time-dependent
unknown coefficients that represent the solution of Equa-
tion (1) at nodes within the domain.

Substitution of expressions (3) into Equation (1) will not
satisfy the partial differential equation and hence will pro-
duce a residual. The goal of the finite element approxima-
tion is to minimize this error. This can be accomplished
by introducing the weight function, ϕi(ρ), and setting the
integral of the weighted residuals to zero. In the Galerkin
method, which was used in this study, the weighting func-
tions are chosen to be identical to the basis function
[1,31]:

where Ω is the study domain. Applying Green's first iden-
tity [37,39] to equation (4) yields:
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in which Ωe is the domain of element and qfn and qcn are
fluxes of the free and bound bio-macromolecules across
the boundary out of the element, respectively.

The time derivatives in equation (5) were approximated
using an Euler time-marching algorithm (backward finite
difference scheme). Inserting equation (3) into equation
(5) and integrating over the elements produces a system
of time-dependent ordinary differential equations which
can be formulated in matrix form:

where:

in which ρe is the radial position of the centroid of ele-
ment e.

Parameter optimization

The inverse problem was formulated as a nonlinear opti-
mization problem in which model parameters p = [Df,

, Kd] were optimized by minimizing a penalty function

representing the discrepancy between the observed and
predicted average fluorescence intensity recovery time
series inside the bleach spot [1]. If the measurement errors
asymptotically follow a multivariate normal distribution
with zero mean and covariance matrix,V, the likelihood
function can be formulated as [40]:

where L(β) is the likelihood function, N is the number of
observations, p is the vector of the parameters being opti-
mized, U* is a vector and/or matrix of observations, and
U is a corresponding vector and/or matrix of model pre-
dictions as a function of the parameters being optimized.
This vector is obtained by solving the forward problem.
The maximum likelihood estimator consists of those val-
ues of the unknown parameters that maximize the magni-
tude of the same likelihood function [40]. Since
logarithm is a monotonically increasing function of its
argument (the value of p that maximizes L(p) also maxi-
mizes ln L(p)), and because ln L(p) is simpler and much
easier to use than L(p) itself, therefore ln L(p) is usually
used in optimization:

The maximum of the likelihood function must satisfy the
set of equations ∂ ln L(p)/∂p = 0. When the error covari-
ance matrix is known, maximization of equation (8) is
equivalent to the minimization of the following weighted
least square problem [1]:

ϕ(p) = [(U* - U(p))TV-1(U* - U(p))] (9)

where ϕ(p) is the objective or penalty function. If there is
information about the values and distributions of param-
eters, it can be incorporated in the objective function as
well [1]:

in which p* is parameter vector containing a priori infor-

mation,  is the corresponding predicted parameter vec-

tor, and Vp is the covariance matrix for the parameter

vector. This kind of optimization is known as Bayesian esti-
mation. The second term in equation (10), which is some-
times called the plausibility criterion [1] insures that the
optimized values of the parameters remain in some feasi-
ble region around p*. Matrices V and Vp, which are some-

times called weighting matrices, provide information
about the measurement accuracy as well as any possible
correlation between measurement errors and between
parameters.
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A limitation of equation (10) is that the error covariance
matrix is generally not known. A common approach to
overcoming this problem is to make some a priori
assumptions about the structure of the error covariance
matrix. In the absence of any additional information
regarding the accuracy of input data, the simplest and
most recommended way is to assume that observation
errors are uncorrelated which implies setting V equal to
the identity matrix and Vp to zero. In this case the optimi-
zation problem collapses to the well known ordinary least
squares formulation [41,42]:

where r is the residual (differences between the observed
and predicted state variable) column vector.

Minimization of equation (11) was carried out iteratively
by first starting with an initial guess of parameter vector,
{p(k)} and updating it at each iteration until the termina-
tion criteria were met [1,31,32]:

p(k+1) = p(k) + α(k)∆p(k) (12)

where α(k) is a scalar step length and ∆p(k) is the direction
of the search or step direction [41].

Using QR decomposition [43] the linear least square
problem below, which is the Osborne-Moré extended ver-
sion of the Levenberg-Marquardt algorithm, was solved to
obtain the search direction in each iteration:

where λ is a positive scalar known as Marquardt's param-
eter or Lagrange multiplier [36], J is the Jacobian or sensi-
tivity matrix, and D is a positive definite scaling matrix
that ensures the descent property of the algorithm even if
the initial guess is not "smart". For non-zero values of λ,
the Hessian approximation is always a positive definite
matrix, which ensures the descent property of the algo-
rithm [41].

A combination of "one-sided" and "two-sided" finite dif-
ference methods [30-32] was used to calculate the partial
derivatives of the state variable with respect to model
parameters and to construct the Jacobian matrix. The
"One-sided" finite difference method estimates the partial
derivatives of the state variable with respect to model
parameters by solving the forward problem (Eq. 1) p+1
times (p is number of parameters to be estimated). On the

other hand, the "two-sided" finite difference method esti-
mates the partial derivatives of the state variable with
respect to model parameters by solving the forward prob-
lem (Eq. 1) 2p+1 times. At the early stages of the optimi-
zation, where the search is far from the solution, the "one-
sided" finite difference scheme, which is computationally
cheap but not as accurate as the "two-sided" approach,
was used. As the optimization proceeds in the descent
direction, the algorithm switches to a more accurate but
computationally expensive approach in which the partial
derivatives of the state variable with respect to the model
parameters are calculated using a two-sided finite differ-
ence scheme. The switch was made when ϕ(p) ≤ 1 × 10-2.
A detailed description of the procedure to update the Jaco-
bian matrix is presented in [1,30].

In order to update λ at each iteration, the optimization
starts with an initial parameter vector and a large λ(λ = 1).
As long as the objective function decreases in each itera-
tion, the value of λ is reduced. Otherwise, it is increased.
The approach avoids calculation of λ and step length in
each iteration and is therefore computationally cheap. A
detailed description of the code for updating λ is given in
[31].

Finally, the following stopping rule was used to end the
search [1,31,32]:

 Stop

else

 Continue Optimization Loop

end

where  is the gradient of the penalty function at

solution,  is relative changes in the magnitude of

the parameters in two consecutive iterations, and δ1, δ2,

and δ3 are user defined small values.

The accuracy of the optimization was assessed by good-
ness-of-fit analysis. The Root Mean Squared Error (RMSE)
and Coefficient of Determination (R2) were calculated for
every set of optimized parameters [44,45]:

RMSE = (rTr/(N - p))1/2 (14)
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where Ii and  are the observed and predicted total nor-

malized average fluorescence intensity, F + C, inside
bleached area during time course of FRAP experiment,
respectively and N is the number of observations on FRAP
time series.

Experimental Studies
A FRAP experiment was conducted on the mouse adeno-
carcinoma cell line 3617 at the Laboratory of Receptor
Biology and Gene Expression, National Cancer Institute-
National Institutes of Health, Bethesda, MD (McNally,
personal communication). This data set consists of 43 flu-
orescent recovery values gathered in the course of a 20-sec-
ond FRAP experiment and post processed to reduce noise.
The developed inverse modeling strategy was then used to
quantify mass transport and binding rate parameters of
GFP-tagged glucocorticoid receptor.

Results and Discussion
Model validation
Before being incorporated into the framework of the
developed inverse modeling strategy, the numerical
model was first validated against the exact solution of
Sadegh Zadeh and Montas (unpublished) and the semi-
analytic solution of [25]. The results are depicted in Fig-
ures 1a, 1b, and 1c (for the exact solution of Sadegh Zadeh
and Montas) and in Figures 1d (for the solution of [25]).
To validate our model with the solution of [25], the aver-
age of the normalized fluorescence intensity within the
bleach spot during the time course of the FRAP experi-
ment, I(t), was calculated by [1,30]:

While Figure 1a shows spatial and temporal distributions

of free GFP-GR, F(ρ, Df, , Kd, t), inside and outside

bleach spot after photochemical bleaching during time
course of a FRAP experiment, Figure 1b presents distribu-

tions of bound protein, C(ρ, Df, , Kd, t), at times of 0,

0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, and 2 seconds. Both Fig-
ures indicates that there is excellent agreement between
the analytic solution and numerical simulator. Spatial and
temporal distributions of total fluorescently tagged GFP-

GR, [F + C](ρ, Df, , Kd, t), inside and outside the

bleached area are given in Figure 1c, which presents excel-

lent agreement between the analytic and numerical solu-
tions. The same time range was used to perform the
comparison. As Figure 1d indicates, there is excellent
agreement between the two solutions in simulating the
average normalized fluorescence intensity within the
bleach spot during time course of the FRAP experiment.

Model calibration
The developed methodology was then used to estimate
diffusion coefficient and binding rate parameters of GFP-
tagged glucocorticoid receptor (GFP-GR). The results are
given in Table 1 and Figure 2 (the experimental FRAP time
series data are from McNally, personal communication).
The Root Mean Squared Error (RMSE) and Coefficient of
Determination (R2) were calculated, using equations (14)
and (15), for every set of optimized parameters and pre-
sented in the last two columns of Table 1. The values for
diffusion coefficient, binding rate parameters, and corre-
sponding indices estimated by [25] are given as the first
run in Table 1 and Figure 2 for sake of comparison. Table
1 and Figure 2 indicate that many combinations of the
three parameters can essentially produce the same error
level (RMSE) and yields equally excellent fits. The values
obtained by [25] represent only one of the possible solu-
tions. In other words, the inverse problem is not well-
posed and has no unique solution. Therefore, one may
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Îi

I t
w

F t C t d
w

( ) [ ( , ) ( , )]= +∫
2
2 0

ρ ρ ρ ρ (16)

Ka
∗

Ka
∗

Ka
∗

Spatial and temporal distributions of GFP-GR inside bleach spot after photo-chemical bleaching during time course of a FRAP experimentFigure 1
Spatial and temporal distributions of GFP-GR inside bleach 
spot after photo-chemical bleaching during time course of a 
FRAP experiment. The Figure shows comparison of the ana-
lytic solution (solid lines) and numerical model (dots) at 
times of 0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, and 2 seconds for 
free GFP-GR (a), bound complex (b), and total GFP-GR (c). 
Validation of the numerical model (dots) with the analytic 
solution (solid lines) of [25] is depicted in (d). The graph 
presents average normalized fluorescent intensity, obtained 
by equation (16), inside the bleach spot.
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conclude that the Fluorescence Recovery after Photob-
leaching technique, though useful in studying the dynam-
ics of biological systems, provide insufficient information
to uniquely estimate free diffusion coefficient and bind-
ing rate parameters of biomolecule simultaneously.

To illustrate the non-uniqueness of the inversion, we plot-
ted the optimized parameter values in three-dimensional
parameter hyper-space (Fig. 3). The plot visibly indicates
that the different combinations of model parameters can
lead to same penalty (objective) function or error levels.
The plot also suggests a potential linear form of correla-
tion between bio-macromolecular diffusion coefficient
and pseudo-association rate parameter. The first set of
optimized parameters, obtained by [25], shows that 86%
of the GFP-GR is bound to DNA, nuclear matrix or
unknown binding sites and only 14% is free. Our analysis,
however, suggests that using FRAP, one cannot conclude
how much of the bio-macromolecule under study is free
and how much is bound. As Table 1 shows, the concentra-
tion of free GFP-GR ranges from zero to 100 per cent. The
same is true for the concentration of the bound complex.
For example, referring to the results obtained in run 11,
one may conclude that 100 per cent of the GFP-GR is free,

while the results of run 6 show that all of it is bound. Note
that both parameter sets produce excellent fits with the
same RMSE and coefficient of determination (see Figure
2).

Analysis of Table 1 indicates that the average binding time
per vacant site, calculated by tb = 1/Kd [25], ranges between

0.3 and 500 mili-seconds. Similarly, the average time for
diffusion of GFP-GR from one binding site to the next,

obtained by td = 1/ [46], varies over several orders of

magnitude. The broad range of average binding time and
average diffusion time for GFP-GR indicates that it is
doubtful that one can infer an average time for macro-
molecule diffusion and binding inside living cells from
FRAP results alone.

This analysis explains the conflicting parameter values
that may have been reported in literature for biomolecules
using the FRAP protocol. Based on our findings, using
experimental FRAP time series and coupling it with curve-
fitting procedures can lead to misleading conclusions
regarding binding reaction, slow or rapid mobility of bio-

Ka
∗

Table 1: The results of parameter estimation for GFP-GR using an experimental time series obtained by the Fluorescence Recovery 
after Photobleaching (FRAP) technique.

run Df (µ m2s-1)
 (s-1)

Kd (s-1) Feq Ceq tb (ms) td (ms) RMSE R2

1* 9.20 500 86.4 0.1473 0.8527 11.60 2 0.0255 0.9886
2 1.9049 1.0549 3.7657 0.7812 0.2188 265 0.948 0.0259 0.9897
3 1.2319 0.1113 12.0951 0.9909 0.0091 83 8985 0.0245 0.9903
4 3.4980 10.2501 8.3917 0.4502 0.5498 119 97.6 0.0275 0.9882
5 22.8472 369.7719 24.1606 0.0613 0.9387 41 2.7 0.0251 0.9898
6 81.9332 4785 75.4057 0.0155 0.9845 13 0.2 0.0233 0.9912
7 1.2160 0.7076 5057 0.9999 0.0001 0.2 1413 0.0245 0.9903
8 1.8034 0.5172 2.4778 0.8273 0.1727 403 1933 0.0259 0.9896
9 4.6451 35.3378 15.8084 0.3091 0.6909 63 28.3 0.0257 0.9895
10 4.4471 1.4531 2.0004 0.5792 0.4208 500 688 0.0321 0.9855
11 1.2014 0.00003 20.3473 1.0000 0.0000 49 3.3 × 107 0.0246 0.9901
12 20.3662 928 62 0.0626 0.9374 16 1078 0.0233 0.9912
13 7.4662 101 23.3243 0.1876 0.8124 43 9901 0.0247 0.9904
14 1.2210 7.5124 1423 0.9947 0.0053 0.7 1333113 0.0245 0.9903
15 19.5330 160 13.9388 0.0801 0.9199 72 6250 0.0290 0.9865
16 1.2350 32.2818 1590 0.9801 0.0199 0.6 30977 0.0245 0.9902
17 11.0675 300.4231 40.4005 0.1185 0.8815 25 3329 0.0235 0.9910
18 9.1683 1524 237.1330 0.1346 0.8654 4 656 0.0239 0.9908
19 8.3273 145.5289 28.1600 0.1621 0.8379 35 6871 0.0241 0.9906
20 1.2275 23.0060 3478 0.9934 0.0066 0.3 43467 00245 0.9908
21 4.9839 653.6816 214.1402 0.2468 0.7532 5 1530 0.0239 0.9908
22 94.2711 1857.1133 27.6413 0.0147 0.9853 36 538.5 00247 0.9901
23 1.2584 21.1318 590 0.9654 0.0346 2 47322 0.0245 0.9903
24 4.5057 63.7910 26.8675 0.2964 0.7036 37 15676 0.0239 0.9908

* The parameter values in the first row were obtained by Sprague et al. (2004). The experimental FRAP data are from J. McNally (personal 
communication).

Ka
∗

Page 7 of 13
(page number not for citation purposes)



BioMedical Engineering OnLine 2007, 6:24 http://www.biomedical-engineering-online.com/content/6/1/24
molecules, and concentrations of free macromolecule,
vacant binding sites and bound complex inside living cells
and tissues.

In this study, the choice of a numerical approach rather
than an analytic solution and a finite element approach
rather than the finite difference scheme was made so that
the parameter estimation could be readily extended to
arbitrary initial and boundary conditions, complex
domain geometry, and especially so that it could be
extended to a ternary system of coupled nonlinear partial
differential equations governing transport of free bio-
macromolecule, bound complex, and vacant binding site
where all three transport entities are moving species and it
is impossible to obtain an exact solution for the systems
of equations.

So far most of the FRAP studies have assumed an infinite
domain to specify boundary conditions and to solve the
system of partial differential equations governing biomol-
ecule transport in-vivo [[13,25,29,30] among many oth-
ers]. This assumption is unrealistic in the context of living
cells. In this study, we address and improve this shortcom-
ing by specifying a finite domain and by formulating Neu-
mann boundary conditions on the cell membrane.

Residual analysis
The inverse methodology used in this study is based upon
the following assumptions: 1) residuals have a mean of
zero, 2) residuals have constant variance, 3) residuals are
uncorrelated, and 4) residuals are normally distributed.
When these assumptions are met, the parameter optimi-

zation estimates poses optimal statistical properties [40-
42]. When these conditions are not met the parameter
optimization method may no longer produce optimal
parameter estimates. Residuals, or errors in parameter
optimization, are defined as the difference between the
observed and simulated state variable(s). An analysis of
the residuals is a useful and key technique to study possi-
ble trends, oscillations, and correlation of errors. It is also
important in validating the assumptions on which the
inverse modeling strategy rests.

To analyze the residuals, they were plotted against average

normalized fluorescence intensity, (t), within the
bleach spot during the time course of the FRAP experi-
ment. Since the residuals are time and/or space series,
their possible correlation was thoroughly analyzed. Dif-
ferent statistical measures such as error frequency analysis,
normal probability plot, and hypotheses tests were
explored to make decision about the residuals. The Stu-
dent's t-test was used to test if the residuals have a mean of
zero. Bartlett's test [47] was applied to determine if the
residuals have constant variance. To test the normality of
the residuals the Chi-square and Kolmogorov-Smirnov
one sample tests were employed. Finally, the t-statistic [48]
was used to test if the residuals are correlated.

The basic assumption in the hypothesis test on the residuals'
mean is that the data come from a normally distributed
population with unknown variance. In this study, the fol-
lowing null and alternative hypotheses were formulated:

I

H

HA

0 0

0

:

:

µ µ
µ µ
=
≠

(17)

Three-dimensional parameter hyper-spaceFigure 3
Three-dimensional parameter hyper-space.Predicted and experimental normalized average fluorescent intensity recovery curves for GFP-GR (dots: Observed, solid lines: Simulated) obtained by equation (16)Figure 2

Predicted and experimental normalized average fluorescent 
intensity recovery curves for GFP-GR (dots: Observed, solid 
lines: Simulated) obtained by equation (16). The experimental 
data are from J. McNally (personal communication).
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To perform the test the following critical t-statistic (t) was
used:

in which , s, and N are the mean, standard deviation,

and size of the sample (errors), respectively. µ0 is the

mean of the population which is zero.

For -tα/2 <t <tα/2 the null hypothesis (mean is zero) cannot
be rejected at the significance level of α. The rejection
regions t < -tα/2 or tα/2 <t indicate that the null hypothesis
can be rejected at the level of significance α.

The mean and standard deviation of the residuals were -
0.0029 and 0.0234 with sample size n = 43. The t-statistic
was calculated as:

For 42 degrees of freedom, the tabled t-values for different
levels of significance are given in Table 2. The calculated t-
statistic was then compared with the tabled t-values at dif-
ferent levels of significance and the results summarized in
Table 2. As the Table indicates the null hypothesis (mean of
the residuals is zero) can not be rejected even at 20 per
cent level of significance. The possibility of committing
error type one is extremely slim.

The Bartlett's test statistic was used to verify for equality of
variances across sub-groups of a sample against the alter-
native that variances are not constant. Equal variance
across samples is called homogeneity of variances and is usu-
ally used in several statistical tests such as analysis of var-
iance and nonlinear optimization which assumes that the
errors have constant variance [47]:

where  is the variance of the subgroup, Ni is the sample

size of the subgroup, k is the number of subgroups, and

 is the pooled variance. This variance is a weighted aver-

age of the variances:

The rejection region is those values of T >  in

which  is the upper critical value of the chi-square

distribution with k - 1 degree of freedom at the level of sig-

nificance α.

The following null and alternative hypotheses were formu-
lated:

To verify if the residuals have constant variance they were
divided into different sections. One of the possible solu-
tions in Table 1 was chosen and the residual plot versus
laser beam recovery (Fig. 3) was divided into three
regions. The variance in each region was calculated and
compared with each other using the Bartlett test. The
residuals were divided into three groups as:

 = S2(r(1:5)) = 9.2651 × 10-4

 = S2(r(6:24)) = 9.3655 × 10-4

 = S2(r(25:33)) = 9.3126 × 10-5

The pooled weighted variance was found to be  =

7.1030 × 10-4. The Bartlett's statistic was calculated as T =

9.5454 which is less than the upper critical value of the χ2

for two degrees of freedom (k = 3) at one per cent level of

significance (  = 10.60). It is, however, more than

the tabled value for five per cent level of significance. At

t
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Table 2: The results of hypothesis test on the residuals' mean in FRAP model.

α 0.01 0.05 0.1 0.2

t-value 2.8120 2.0175 1.6820 1.3020
Decision Accept H0 Accept H0 Accept H0 Accept H0
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one percent level of significance the null hypothesis (the
residuals have constant variance) cannot be rejected.
Based on this test and analysis of residual plot versus laser
beam recovery, it is concluded that the residuals have
equal variance.

The following null and alternative hypotheses were used to
test possible correlation among the residuals:

where ρ is the correlation coefficient in the population.
For n > 2 these hypotheses can be tested using the follow-
ing t-statistic [48]:

in which rs is the correlation coefficient in the sample.

The null hypothesis (correlation coefficient is zero) is
rejected when the absolute value of the t-statistic is greater
than the critical t-value (t < -tα/2 or tα/2 <t) at the level of sig-
nificance α.

The residuals were first divided into two sub-groups:

r1 = r(1 : end - 1)

r2 = r(2 : end)

The correlation coefficient (rs = 0.1931) was then calcu-
lated and was used to obtain the critical t-statistics (with
sample size n = 42):

These critical t-statistics were then compared with the tabled
t-values at different levels of significances and the results
presented in Table 3. As the Table indicates the null hypoth-
esis (residuals are uncorrelated) can not be rejected even at
20 per cent level of significance. The possibility of having

error type one is almost zero and, therefore, we didn't per-
form autocorrelation/serial correlation analysis.

One of the assumptions of the least squares theory, which
was applied in this study, is the normality of the residuals.
In other words, it is assumed that the errors are normally
distributed. To analyze the normality of the errors, two
qualitative and two quantitative methods were used: 1)
Error frequency analysis and normal probability plots,
and 2) Hypothesis tests on the normality of the residuals
using the chi-square goodness of fit test, which is based on
the differences between the observed (oi) and expected (ei)
error frequencies will be used [49]:

where k is the number of intervals or cells.

Error frequency analysis was first performed by construct-
ing residuals' histogram. The histogram is presented in
Figure 4. The Figure visibly shows that the errors are nor-
mally distributed. This was confirmed by the analysis of
the normal probability plot (Fig. 5) and the chi-square
hypothesis test on the normality of the random variable.

Residual frequency analysis and normal probability plots,
though useful in figuring out the underlying probability
distribution function, are only qualitative means to study
possible normal distribution of random variable. To ver-
ify normality of the errors, the chi-square test was used. To
perform the test, first the residuals were grouped into dif-
ferent cells (histograms). The number of residuals in every
cell were counted which is ei. Then using the upper limit

of the cells, the mean, standard deviation, and the cumu-
lative normal distribution, the expected frequencies were
calculated. The cells were merged when the observed error

frequencies were less than 5. Then the χ2 index was calcu-

lated and compared with [50]. This information

was used in the hypothesis test. The null and alternative
hypotheses were formulated as:
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Table 3: The results of hypothesis test on the correlation of residuals in FRAP model.

α 0.01 0.05 0.1 0.2

t-value 2.7040 2.0210 1.6820 1.3030
Decision Accept H0 Accept H0 Accept H0 Accept H0
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or;

H0 : r = N(0.0012,0.0224)

HA : r ≠ N(0.0012,0.0224)

where µ and σ are the mean and the standard deviation of
the residuals in population.

Since the calculated χ2 (3.6190) is less than the tabled value

(  = 4.61), the null hypothesis (the residuals are

normally distributed) cannot be rejected even at 20 per
cent level of significance implying that the residuals are
normally distributed.

The chi-square test is a powerful test when the sample size
is large. However, combining cells when the expected
error frequencies are less than five loses information and
hence decreases the power of the test. Furthermore, for
very small samples this test is not applicable [49]. To over-
come these limitations, the Kolmogorov-Smirnov one
sample test is usually used since it treats each observation
separately and does not lose information through merg-
ing of categories. This test is more powerful than the chi-
square test when sample size is not large.

The Kolmogorov-Smirnov one sample test was used to
verify if the residuals are normally distributed. Results
(not shown here) indicate that the null hypothesis (the
errors are normally distributed) cannot be rejected even at
20 per cent level of significance implying that the residu-
als are strongly normally distributed.

In conclusion, detailed residual analysis indicates that: 1)
residuals have zero mean, 2) residuals have constant vari-
ance, 3) residuals are normally distributed, and 4) residu-
als are uncorrelated. Therefore, the necessary and

H r N

H r NA

0 : ( , )

: ( , )

=
≠

µ σ
µ σ

(25)

χ( . , )0 80 2
2

Normal probability plot for FRAP experiment using one-site-mobile-immobile modelFigure 6
Normal probability plot for FRAP experiment using one-site-
mobile-immobile model.

Residuals versus normalized average fluorescent intensity in FRAP experiment using one-site-mobile-immobile modelFigure 4
Residuals versus normalized average fluorescent intensity in 
FRAP experiment using one-site-mobile-immobile model.

Histograms of residuals for normalized average fluorescent intensity using one-site-mobile-immobile modelFigure 5
Histograms of residuals for normalized average fluorescent 
intensity using one-site-mobile-immobile model.
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sufficient criteria for least square parameter optimization,
which was used in this study, were met.

Conclusion
A Galerkin-based finite element model was developed
and applied to solve a system of two coupled partial dif-
ferential equations governing GFP-GR transport and reac-
tion in living cells. A finite domain was used to formulate
boundary conditions on the cell membrane. The simula-
tor was coupled with the Levenberg-Marquardt algorithm
and a FRAP time series to estimate protein mass transport
and reaction rate parameters. The developed strategy
presents excellent agreement with the experimental data
and the developed strategy is an efficient approach to
extract as much physiochemical information from the
FRAP protocol as possible. Uniqueness analysis of the
inverse problem indicates that the FRAP protocol provides
insufficient information for unique quantification of dif-
fusion coefficient and binding rate parameters.
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