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Abstract
Background: The erythrocyte sedimentation rate (ESR) is a simple and inexpensive laboratory
test, which is widespread in clinical practice, for assessing the inflammatory or acute response. This
work addresses the theoretical and experimental investigation of sedimentation a single and
multiple particles in homogeneous and heterogeneous (multiphase) medium, as it relates to their
internal structure (aggregation of solid or deformed particles).

Methods: The equation system has been solved numerically. To choose finite analogs of
derivatives we used the schemes of directional differences.

Results: (1) Our model takes into account the influence of the vessel wall on group aggregation
of particles in tubes as well as the effects of rotation of particles, the constraint coefficient, and
viscosity of a mixture as a function of the volume fraction. (2) This model can describe ESR as a
function of the velocity of adhesion of erythrocytes; (3) Determination of the ESR is best conducted
at certain time intervals, i.e. in a series of periods not exceeding 5 minutes each; (4) Differential
diagnosis of various diseases by means of ESR should be performed using the aforementioned timed
measurement of ESR; (5) An increase in blood viscosity during trauma results from an increase in
rouleaux formation and the time-course method of ESR will be useful in patients with trauma, in
particular, with traumatic shock and crush syndrome.

Conclusion: The mathematical model created in this study used the most fundamental differential
equations that have ever been derived to estimate ESR. It may further our understanding of its
complex mechanism.

Introduction
The erythrocyte sedimentation rate (ESR) is a simple and
inexpensive laboratory test that is widespread in clinical
practice for assessing the inflammatory or acute response

[1]. The ESR has also been found to be of clinical signifi-
cance in the follow-up and prognosis of non-inflamma-
tory conditions, such as prostate cancer [2], coronary
artery disease [3], and stroke [4]. In addition, the ESR can

Published: 04 April 2005

BioMedical Engineering OnLine 2005, 4:24 doi:10.1186/1475-925X-4-24

Received: 24 January 2005
Accepted: 04 April 2005

This article is available from: http://www.biomedical-engineering-online.com/content/4/1/24

© 2005 Ismailov et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 16
(page number not for citation purposes)

http://www.biomedical-engineering-online.com/content/4/1/24
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15807888
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BioMedical Engineering OnLine 2005, 4:24 http://www.biomedical-engineering-online.com/content/4/1/24
be used in the diagnosis of inflammatory conditions [4,5]
as well as in the prognosis of non-inflammatory condi-
tions [6]. Some examples of recent applications of the ESR
may include sickle cell disease and bacterial otitis media
[7,8]. The ESR has been shown to be elevated in 55% of
patients with otitis media [7]. Those with elevated ESR
have been shown to have a much higher risk for recur-
rence [7]. In sickle cell anemia, the ESR is usually low in
the absence of a painful crisis [8]. A low ESR is an intrinsic
property of the sickle red blood cell rheology [9,10]. Cer-
tainly, the ESR is only one parameter among others that a
clinician can use in the diagnosis and follow up of the
above diseases.

Sedimentation of particles, in particular erythrocytes, in a
Newtonian fluid (plasma), has been studied by many
investigators based on the theory and, therefore, model of
interpenetrating motion of two-phase medium that take
into account aggregation of erythrocytes [11,12]. We
aimed to investigate group precipitation of particles, such
as erythrocytes, in a two-phase medium (plasma), both
theoretically and experimentally. We added the influence
of the vessel wall on group precipitation of particles in
tubes, as well as the effects of rotation of particles, the con-
straint coefficient, and viscosity of a mixture as a function
of the volume fraction. The theory has also taken into con-
sideration certain experimental coefficients such as: the
coefficient of interaction between the fluid and particles,
the aggregation coefficient, the constraint coefficient of
phases, the coefficient of viscosity of the mixture, and the
coefficient of rotation of a particle. The equation system
has been solved numerically. To choose finite analogs of
derivatives we used the schemes of directional differences.

Methods
Stokes[13] was the first who derived an equation for non-
steady-state flow when he was linearizing the equation of
motion of a viscous incompressible fluid. In that work,
Stokes developed a theory of resistance for a falling spher-
ical body. The relationship that he derived is called Stokes'
formula:

F = 6πµ aV,  (1)

Where µ represents viscosity of the fluid, a – the radius of
the sphere, V velocity of the fall, and F resistance force.

Albert Einstein investigated the disturbances caused by a
particle suspended in a flow with a constant velocity gra-
dient [13,14]. He developed a theory of resistance to shear
for a suspension of small spherical particles in a continu-
ous fluid medium. He proved theoretically that an
increase in viscosity of a fluid carrying solid particles is
connected to the volume fraction of the particles via a pro-
portionality coefficient:

µ = µ0 (1 + 2.5 f2),  (2)

where µ0 represents viscosity of the fluid, and f2 concentra-
tion of particles.

Up to now, the Einstein formula of viscosity of suspension
has been the foundation for most theories describing
behavior of a suspension in a shear flow [13,14]. Most
studies deal with precipitation of a single particle or mul-
tiple diluted particles in a Newtonian viscous fluid and
offer various corrective parameters for the Stokes formula
[13,14]. For instance, Ozeen [13,14] deduced an approxi-
mate solution of equations for a flow of spheres that
served as a basis for the formula

where NRe = aVρ/µ is the Reynolds number.

Subsequently, some problems related to non-Newtonian
behavior of fluids [13,14] were also investigated. Casuell
and Schwarz applied Ericson and Rivlin's model for a slow
flow of a non-Newtonian fluid [13,14]. Applying the
method of jointed expansions that uses corresponding
non-Newtonian terms for both "internal" and "external"
expansions to the formula of spherical flow, they derived
the following formula:

where φ is a compound expression dependent on non-
Newtonian parameters that are constant for any given
fluid under isothermal conditions. Lesli also investigated
a slow spherical flow, using the Oldroid model [13,14] for
non-Newtonian conditions. He concluded that the non-
Newtonian term is proportional to V3.

The above studies refer to the precipitation or flow of a
single spherical particle. However, concentrated mixtures
with a large number of particles interacting during precip-
itation or in a flow are affected not only by the Stokes
force shown in equations (1), (3), and (4), but also by
other forces given in equation [14]:
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where  is a buoyancy force,  – frictional force
or Stokes force resulting from the viscous force during
interaction between phases, determined by the difference
between velocities (slippage) u1 - u2, size – a, by the quan-
tity and shape of inclusions, as well as by the physical
properties of phases; p-pressure difference, χ(m) – coeffi-
cient of constraint, ρ1 and ρ2 are densities of the first and
the second phase and are determined by the theory of
multiphase medium as reduced densities, K(µ) – coeffi-
cient of phase interaction, µ1 and µ2 – viscosity of the first
and second phase (where first and second phases corre-
spond to plasma and erythrocytes respectively), f2 – con-

centration of the second phase,  – force related to
the effect of "added masses" and caused by the accelerated
motion of inclusions (particles) relative to the carrying
(viscous fluid) medium, when disturbances arise at a dis-

tance on the order of the size of particles;  – force of
additional effect on particles, due to gradients in the area
of average velocities in the liquid phase (the Magnus or
Zhukovskiy force). This force is a result of the difference
between the densities of phases and the difference
between pressures on the opposite sides of a flowing
particle.

The influence of the shape of particles, their multiplicity,
and some other factors in the expressions for forces

, ,  are taken into account in coeffi-

cients K(µ), χ(m), χ(r). As a first approximation, the data on
precipitation of a single particle or of a body of a corre-
sponding shape can be applied here, disregarding the
direct influence of particles on each other, but taking into
account the constraint of the flow of fluid around particles
that is caused by the multiplicity of particles [11,14,15].

In order to account for the Magnus effect connected to

, it is necessary to take into account the rotation of
particles, and in the general case, also the corresponding
kinetic parameter ω2, which represents the velocity of
rotation that is independent of the field u2 [14]:

where  – coefficient accounting for the shape of parti-

cles (  = 4π/3 for spherical particles with radius a). In
addition to convection, the value of N (the number of par-
ticles per unit volume) may change, due to the processes
of crushing, adhesion, aggregation of particles, and forma-

tion of new ones that are defined by value ψ in the equa-
tion [14]:

In case of the absence of crushing, adhesion, and aggrega-
tion of particles or formation of new ones, i.e. when ψ =
0, as well as under the condition of non-compressibility of

the material (of particles), that is ρ2 = constant α then 
is a constant. Moreover, the equation of conservation of

mass of the second phase[14] leads to .

And N, number of particles per unit volume, can be
expressed as [14]:

or [14]

∂N/∂t + ∇Nu2 = 0.  (9)

It should be noted that in the case of a moderate volume
fraction of particles in a fluid, the mixture of two incom-
pressible phases cannot be considered in terms of Navier
– Stokes' equations, even in the absence of relative rotary
and radial motion [14]. This is because viscosity of sus-
pensions and emulsions is determined using viscosity-
meters based on the measurement of a mass consumption
of mixture Q through a tube, with diameter d and length
L, dependent on pressure ∇P [16-18]. If a Poiseuile flow
of a Newtonian fluid is the case, then a linear connection
between Q and ∇P holds true. It follows, then, that with
low concentrations, when f2 < 0.05, the resulting values of
µef agree with the Einstein formula (2), but when f2 > 0.05
then values µef exceed values obtained from the equation
[14]:

Additionally, there is considerable variation among differ-
ent authors and among different combinations of phases.
This variation apparently reflects the non-Newtonian
nature of concentrated viscous disperse mixtures and
insufficiency of values ρ and µ for determining their
mechanical properties. In this regard, laboratory experi-
ments have to be carried out for each mixture and real
devices over a range of operating parameters to determine
the loss of pressure when applying different rheological
models, in particular, the model of a viscous fluid with an
effective coefficient of viscosity.

One should keep in mind that when f2 ≥ 0.1, in addition
to the shape and size of solid particles, their material may
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also have an effect on effective viscosity and other rheo-
logical characteristics of the mixture. Apparently, this is
due to irregular distribution of particles, collision of par-
ticles with each other, and solid walls [16-18].

The above considerations lead to an examination of group
precipitation of particles, when f2 ≥ 0.1 in the interpene-
trating model of two- or multiphase medium. The first
report of such an approach was presented in [11], where
researchers used the theory of interpenetrating motion of
two-phase mediums, taking into account the aggregation
of particles, in this case erythrocytes, in a fluid layer lim-
ited by a free border x = L from the top and a solid border
x = 0. In those studies, precipitation of particles in a fluid
was considered based on the following assumptions: the
motion of particles in a fluid is taking place in the strictly
vertical direction under the influence of gravity; the iner-
tial force is negligibly small; viscosity appears only during
interaction between particles and the fluid surrounding
them; spontaneous disintegration is absent; the column
of sedimentation of particles is divided into two main
zones: clean fluid and settling particles. The influence of
the wall and interaction between particles were ignored.
Studies [19,20] showed that the radius of the tube has an
effect on sedimentation of particles, in particular, erythro-
cytes. From this it follows that the group precipitation of
particles, such as erythrocytes, depends appreciably on
border conditions, in this case on conditions of adhesion
and impact of particles on the vessel wall [19,20].

In addition, in most studies the rotation of particles

caused by force  was not taken into account, and
neither were the force of interaction between adjacent par-

ticles or the force  arising from accelerated move-
ment of particles. Thus, in the present work, we examine
the group precipitation of particles in a liquid mixture

with forces  and , as well determination of the
constraint coefficient and of viscosity of the mixture µm as
functions of the volume fraction of particles. We also
describe the effect of the vessel wall on the process of
group precipitation of particles in a multiphase medium.

Determination of the coefficient of constraint and 
viscosity of a mixture as a function of the volume fraction 
of particles
Problems of constrained precipitation of solid and
deformed particles in a fluid are the principal part of the
theory of two-phase flows and are of great importance for
such hydrodynamic processes as: mass of exchange, sepa-
ration by gravity, oil refining, and precipitation of eryth-
rocytes in blood [11,12,16-26].

Studies in this field usually deal with high- and low-con-
centration mixtures. The laws of constrained precipitation
of moderately concentrated mixtures have not been well
investigated. The foundation of precipitation of a single
particle in an infinite fluid is the Stokes law. According to
that law, the frictional force arising from the motion of
spherical particles with diameter d and velocity V in a
medium of viscosity µ is expressed by formula

The gravitational force acting on a particle depends on its
specific gravity, that is

where ρ1;ρ2;g – the density of a fluid, density of the parti-
cle, and acceleration of gravity respectively.

 – buoyancy force, and, in (11)

 – frictional force.

Due to force  the particle accelerates its motion.
Aside from gravitational force, the particle is affected by
frictional force directed oppositely; its value increases
with the increasing velocity, according to the Stokes law.

This means force  is canceled out by gravitational

force . Therefore, the movement proceeds with con-
stant velocity Vc that is determined by the equations (11)
and (12):

Sometimes one has to deal with precipitation of a large
number of particles in concentrated mixtures. Formulae
for the velocity of precipitation of particles as a function
of the concentration and velocity of a single particle in an
infinite fluid can be derived using some statements of the
interpenetrating model [14] and the Euler equation [14].
From these formulas, an equation for low concentrations
of particles can be easily deduced; the equation is consist-
ent with the experimental data [27]. Let us assume that in
volume V there are two phases with different values of
specific gravity. Then particles with greater specific gravity
start moving down canals that are being formed; this
holds true for the displacing phase, i.e. the process of
mutual penetration is taking place.
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Let us determine the hydraulic radius of a canal as

If the canal is cylindrical then

From (14) and (15) the effective diameter of the canal is
equal to:

where S – cross-section area of the canal, P – perimeter of
the canal. Multiplying both numerator and denominator
by diameter d (in this case d corresponds to the diameter
of a single erythrocyte) and by volume V and also taking
into account [21] that external concentration equals vol-
ume concentration, it follows:

where Su – surface of the particles; f1 – volume fraction of
the first phase. But:

(where N – number of particles per unit of volume equal

to ), therefore (16), (17):

(where  is a coefficient of shape for spherical particles).

For particles of irregular shape:

(  – form coefficient).

We can divide the continuity equation:

V1S = V1iS1

by S, and multiply both numerator and denominator by
diameter d (in this case d corresponds to the diameter of a
single erythrocyte) and by volume V and also taking into
account [21] that external concentration equals volume
concentration. Then it follows:

V1 = f1V1i  (19)

The flow of fluid between particles by analogy with the
flow of fluid in tubes can be expressed as criterion equa-
tions [23]:

or [23]:

In the processes of precipitation when concentration of
inclusions is significant and sizes of particles are small,
and in the processes of industrial filtration as well, a lam-
inar flow is very often observed, for which m = -1, n = 1.
Then [23]:

If one takes into account (18) and (19), the last equation
can be expressed as Coseni Carman for constrained pre-
cipitation in a laminar flow:

Let's divide equation (23) by the number of particles per
unit of volume and derive the resistance force of the fluid
acting on one particle as:

(χ – resistance coefficient for precipitation of a set of
particles).

It is known that the resistance force experienced by a par-
ticle during precipitation in a fluid is:
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F* = Fc

Then from (24) and (25) it follows:

where β – the ratio of velocity to hydraulic size;

χc – resistance coefficient for precipitation of a single par-
ticle (25) in an infinite fluid. From (24) when f1 → 1 it
follows:

when values of Reynolds numbers are small:

Therefore, it can be supposed that the basic mechanism is:

From the equations (26) and (27), we can derive:

where

According to the Stokes law, in a laminar flow we have:

figuring the last equation into equation (30), we can
derive

In accordance with our experimental data when Reynolds
numbers are small, constant C = 5.

Equation (29) when f1 → 1 can be expressed as

β = 1 - cf2.  (30)

The difference between the coefficients of equation (30)
and the coefficients calculated for small concentrations
[22] is the factor of 0.34. If we do not ignore the fraction
of velocity resulting from the proximity of two spheres,
which is true for small concentrations of inclusions, then
equation (30) coincides with the Bachelor formula [22].
The change in the velocity of particles depends on the con-
centration calculated from (29); a wide range of concen-
trations is given in Figure 2.

From the equation of equilibrium of forces, taking into
account the coefficient of constraint, it follows (13) [14]:

Based on (31) and (32) we have:

or taking into account (29)

(φf – coefficient describing constrained precipitation).

Assuming precipitation of a particle in suspension with
viscosity µm, density ρm, we can express the equilibrium
equation [21] as

ρm = f1ρ 1i + f2 ρ2i.  (36)

Allowing for (32) and V1 = 0, it follows

and from (28) we can obtain

When f1 → 1, but C = 2.5, we have the Einstein formula
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From the calculation given in Figure 1, it follows that for-
mula (38) agrees with experimental data (up to f2 = 0.5,
when C = 2.5) obtained in a previous study [27] on the
change of viscosity of suspension for a wide range of flu-
ids, sizes, and materials of solid discrete particles.

The above dependence of relative velocity and viscosity of
the mixture on volume fraction agrees with the experi-
mental data [27]. Let us examine formulae (33) and (34),
and consider the possibility of determining an analytic
calculation formula for the constraint coefficient and
effective viscosity, and their dependence on the concentra-
tion of particles. In (33) and (34) the formula for the rel-
ative velocity of the precipitation of particles has been
derived as:

where V2 – velocity of constrained sedimentation of dis-
perse particles;

Vc – velocity of sedimentation of a single particle (f2 ≈ 0)
in a motionless fluid (V1 = 0);

f2 – volume fraction of disperse phase f1 + f2 = 1;

c – dimensionless numerical coefficient.

As is known[14], from the equilibrium equation of a two-
phase medium, allowing for constraint motion of
particles

The relative velocity of sedimentation as a function of the concentration of particlesFigure 2
The relative velocity of sedimentation as a function of the concentration of particles. Horizontal axis: volume fraction of phase 
two; vertical axis: β, a change in the relative velocity.
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We can derive an equilibrium equation of gravitational
force, buoyancy force, and Stokes force acting on the dis-
perse phase as:

The parameters correspond to the parameters in the study
[14]. The second equation (42) describes a rest condition
of the mixture; that is, the motion of dispersed particles in
one direction accompanies the motion of fluid in the
opposite direction.

From the equation (42) for precipitation of a single parti-
cle (f0 ≈ 0) in (φj = 0) in the at-rest mixture, we can derive
the Stokes formula, however the velocity of constrained
precipitation is:

From the equations (40) and (43), the constraint coeffi-
cient can be determined as:

From the analysis of the experimental data for small vol-
ume fractions (f2 < 0.005), it follows that there are three
types of functions [14] for the determination of a
constraint coefficient corresponding to different types flu-
ids in which spherical particles are precipitating:

The dependence of a change in relative viscosity on the concentration of particlesFigure 1
The dependence of a change in relative viscosity on the concentration of particles. Horizontal axis: volume fraction of solids; 
vertical axis: viscosity (mNsm-2)
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Comparing equations (44) – (47), we can conclude that
formula (44) deduced from [28] is similar to formula
(46).

When  and c ≈ 5 ÷ 6; that is,

under conditions (44), a change of constraint coefficient
is described, depending on the volume fraction of ran-
domly dispersed particles. As described previously [14],
when the concentration of the disperse phase in a mixture
increases, numerical values of volume and shear viscosity
start to differ from each other, and the motion of the mix-
ture cannot be described by Navier – Stokes equations
[14].

When concentrations (f2 < 0.005) and values of viscosity
agree with the Einstein formula, and when concentrations
determined in the laboratory are high, then the viscosities
considerably exceed the values derived from the formula
for moderate and concentrated viscous disperse mixtures
of non-Newtonian nature. In addition, the rheological
parameters are insufficient for the determination of the
mechanical properties of those moving mixtures.

In particular, one of the models of viscous fluid is a model
taking into account the effective coefficient of viscosity, as
an additional rheology parameter. Moreover, it is
assumed that the effective coefficient of viscosity (viscos-
ity of a mixture) reflects not only a shape and size of solid
particles, but also their material and irregularity of their
center of gravity.

Following the approach described in[14] for precipitation
of particles in a fluid with viscosity µm, we can derive the
following equality

Using equation (48) and allowing for equation (43) [28],
it follows that

µm = φf µ1  (49)

We can also substitute equation (44) into equation (49),
and from the equations (45)–(47) and (49) we can derive
[28]

We can summarize here: equation (45) has been derived
from the consideration of the cell model for uniform dis-
tribution of particles; equation (46) deals with the ran-
dom allocation of particles; and equation (47) is the case
of significant formation of clumps and alignment of par-
ticles in chains [14]. Therefore, equations (50) allow one
to determine viscosity of a mixture for all three types of
distribution of particles. Thus, the formulae for calcula-
tion of the constraint coefficient and viscosity of a mixture
as functions of the volume fraction of the disperse phase
have been fully described.

Forces in a two-phase medium that affect group 
precipitation, in particular, precipitation of erythrocytes 
in blood
As follows from the above, there can be four basic inter-
acting forces when particles are precipitating in a mixture:

1. The buoyancy force occurring due to the difference
between densities of phases;

2. The frictional force or Stokes force; it results from inter-
action between the two phases;

3. The force of "added masses" arising from either acceler-
ated or constrained motion of particles;

4. The force of additional effect on particles which is due
to gradients in the area of average velocities in the liquid
phase (the Magnus or Zhukovski force).

These forces should be taken into consideration when cre-
ating a mathematical model of group precipitation in a
multiphase medium.

The first force, buoyancy force, is defined by formula:

where f2 – volume fraction of the second phase (particles).

∆P – gradient of pressure, or the difference of densities of
phases.

The second force, frictional force, or Stokes force, is
defined by the difference of velocities (slippage) |V1 - V2|,
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the size, quantity and shape of inclusions, as well as phys-
ical properties of the phases. From [11] we can write down
the following equation for the frictional force (5), (6):

Instead of viscosity of plasma µ1φ(f2) we can use the vis-
cosity of the mixture determined in formula (50)

Expression (53) has been derived while applying the cell
model for uniform distribution of particles, expression
(54) deals with irregular distribution of particles, and
expression (55) is the case of significant formation of
aggregations and alignment of particles in chains. There-
fore, from the equations (54) and (55), one can deter-
mine the viscosity of the mixture for all three types of
distribution of particles in a fluid. Instead of function

ψ(f2) from [11] we can use .

The third force: the force is related to the action of "added
masses," i.e. this force arises from either constrained or
accelerated motion of particles:

where constraint coefficient χ(m) from formulae (44),
(45) and (46) can be defined as [14]:

Horizontal movement of particles under the influence of
gravitational force can be explained, if one considers the
flow of precipitating particles. In a homogeneous mixture
with a zero average flow rate [24],

f1V1 + f2V2 = 0  (60)

Which means that in each point, the volume flow of the
precipitating solid phase accompanies upward motion of
the fluid. This phenomenon has been considered in the
previous paragraph. The following is the formulae for
forces of the additional effect on particles, caused by gra-
dients in the area of average velocities in the liquid phase:

In addition, coagulation or aggregation of multiple parti-
cles can take place, which is described by these equations
(7), (8), (9) [14]:

Where N – number of units, ψ – total velocity of aggrega-
tion [14].

ψ = KN2,  (63)

where k – aggregation coefficient.

Based on the above, the mathematical model for precipi-
tation of particles in a two-phase medium can be
formulated.

The mathematical model for group precipitation in a two-
phase medium (mixture) in a flat tube
Let us consider precipitation of particles in a fluid on the
basis of the hydrodynamic theory. Experiments on precip-
itation of erythrocytes in plasma carried out in cylindrical
tubes of various diameters have shown that the radius of
the tube significantly affects the process of precipitation
[29].

It follows then that group precipitation of particles such as
erythrocytes, depends on border conditions, in this case
the conditions of adhesion. The small radius of a tube
defines the area of velocities of flow of the liquid phase
during precipitation of a particle. Therefore, particles
experience a differential of pressure from the surrounding
fluid. That is why, in this study, the fluid (carrying phase)
is considered a viscous phase.

Let us consider precipitation of a particle taking place
between vertical parallel walls. We will place X axis
between the walls pointing upward, Y axis also parallel
and equidistant from the walls but horizontal, and Z axis
is horizontal and perpendicular to the walls. Let us
assume that the horizontal length of the tube is 2 h, and
its height is L. We will also assume that the motion is not
taking place along Z axis. This leaves us with two-dimen-
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sional movement of particles. Group precipitation of the
particles in the mixture can be described mathematically
as the motion of two-phase interpenetrating mediums
according to the theory of Rakhmatullin [21].

It follows that equations for the two-phase flow in a Car-
tesian space coordinate system can be expressed as [30]:

for the second phase [30]:

Continuity equations for each phase are expressed as [30]:

and the equation of numerical concentration is then [14]

Assuming that the components of velocity V and W are
negligibly small compared to component U, and that the
horizontal length of the canal is negligibly small com-
pared to the height, that is, V <<> U, W <<> U and L Ŭ 2h,
we can then estimate some terms and simplify the system
of equations ; instead of U1, U2 we will use u1 and u2

where µm – effective coefficient of viscosity of the mixture
that is derived from the formula:

or for specific cases

Where µ1 – viscosity of plasma.

We can write down the continuity equation as

The equation of numerical concentration then becomes:

where N – number of aggregates, ψ – total velocity of
aggregate formation.

Three forces determine the force of interaction between
phases.

The frictional force can be derived from formula (52)

which takes into account the number of aggregates N.
Equation (78) also allows an investigator to take into
account the changes in the number of particles per unit of
volume, the average distance between them, the radius of
particles, volume of the disperse phase, etc. These geomet-
rical parameters have a significant effect on the kinematics
of the aggregation processes.

From [11] we can derive the expression for the total veloc-
ity of aggregate formation

φ = -KN2.  (79)
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From expression (78) when , and based on

the formula from [31] we can obtain

here  – coefficient of shape for the particles in question.

Instead of the force of "added masses"  we can use
formula (56), namely

where χ(m) – coefficient of constraint, which is derived
from one of the following formulae

The Magnus or Zhukovski force is defined by the
expression

Therefore, the closed equation system to solve the prob-
lem has been obtained:

Using equations (74) and (75) we can obtain

Since the precipitating particles cannot flow through the
bottom of the tube, the following holds true:

f1u1 + f2u2 = 0.  (88)

Equation (88) gives us the rest condition of the mixture.
Let us use the force of interaction between phases given in
[11] to derive the closed equation system. First, it is neces-
sary to formulate initial and border conditions.

At t = 0 u1 = 0, u2 = 0,  (89)

(N0 is the number of particles in 1 mm3, a – the radius of
a particle)

This problem can be solved numerically. We will use the
following initial data:

Analysis of the experimental and numerical results and 
their comparison
Figure 3 shows the vertical distribution of concentrations
of the disperse phase at various time intervals. More pre-
cisely, it shows the concentration at various points along
X axis at various intervals of time. In figures 3, different
curves correspond to the distribution of concentration in
the tube after t = 5 min, t = 25 min, t = 60 min from the
beginning of the process. It was noted that the change of
concentration of the disperse phase along the height of
the tube at various intervals of time, corresponds to the
decrease of volume fraction of the disperse phase in the
upper part and its increase in the lower part of the tube.
Moreover, aggregation of particles reinforces the precipita-
tion of erythrocytes.

As one can see, when aggregation coefficient κ is 10-5 the
effect is observed, if we compare the curves in figure 3. It
should be noted that the wall layer has a considerable
effect on precipitation of erythrocytes. Since particles
bounce off the walls, the aggregation of particles in the
central part of the tube is enhanced. As a result, a big
aggregate of particles precipitates faster than a single par-
ticle. This effect was described in the theoretical studies, as
well as shown experimentally. In order to determine the
influence of the vessel wall, we placed the blood of a
patient in capillaries of various diameters. During precip-
itation, erythrocytes descended 18 mm after one hour.

When  they descended 11 mm, but when

 by 6 mm.

That means that the influence of the vessel wall on precip-
itation of erythrocytes is considerable in capillary tubes of
lesser diameter. Also, according to figure 3, the curves of
precipitation are different at various time intervals.
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Figure 4 shows the curve of precipitation of particles as a
function of time, for various values of aggregation coeffi-
cient K, both in the theoretical (curves 1–3, 5, 6) and
experimental studies (curve 4). According to Figure 4, the-
oretical curves are consistent with the experimental data.

Discussion
This work addresses the theoretical and experimental
investigation of single and group precipitation of particles
in homogeneous and heterogeneous (multiphase)
medium, as it relates to their internal structure (coagula-
tion or aggregation of solid and/or deformed particles).
Such processes cannot be described by means of a single
velocity model of a non-Newtonian fluid. Precipitation of
particles in a viscous homogeneous relaxing medium and
the motion of flow of the fluid are directed oppositely,
due to the gravitational force. These processes can be

described by means of a two-velocity interpenetrating,
two-phase (or multiphase) model.

In general, ESR has a complex mechanism where, on the
one hand, an increase in the concentration of erythrocytes
leads to a decrease in β, the change in the relative velocity
of sedimentation (figure 2). On the other hand, such an
increase may result in an increase in the quantity of
rouleaux. Our mathematical model takes into account the
influence of the vessel wall on group precipitation of par-
ticles in tubes, and also viscosity of the mixture, con-
straint, and rotation of particles. This model can also
describe ESR, using the coefficient of the velocity of eryth-
rocyte precipitation.

As mentioned earlier, ESR measurement remains the
method of choice in evaluating different clinical condi-
tions [5]. In our view, the ESR could also be useful in

Curves of the change of concentration of the disperse phase along the height of the tube at various moments of timeFigure 3
Curves of the change of concentration of the disperse phase along the height of the tube at various moments of time. Curves 
1 and 2 when t = 60 min, 3 and 4 when t = 25 min, 5 and 6 when t = 5 min. Curves 1, 3 and 5 correspond to precipitation with-
out border conditions, and 2, 4 and 6 with border conditions. Aggregation coefficient K = 10-5 for all curves. Horizontal axis: 
concentration of the second phase (f2); vertical axis: distance (millimeters)
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patients with the traumatic shock and traumatic crush
syndrome. In general, conditions such as hemorrhage,
trauma, and burns may result in blood viscosity changes
[32]. Erythrocyte aggregation caused by trauma, burns,
and hemorrhage was described in detail by Knisely [33].

In the 21st century, at the time of high-speed transporta-
tion and motor-vehicle accidents, critical states, such as
traumatic shock, have become more widespread. Trau-
matic shock results in generalized vasoconstriction, and
therefore, this condition may result in microcirculatory
disorders that have been associated with increased blood
viscosity [34,35]. Traumatic shock, due to increased blood
viscosity, may further decrease the cardiac output [34].

Theoretically, any trauma may result in extensive intravas-
cular erythrocyte aggregation, irrespective of the presence
or absence of traumatic shock [36]. However, generalized
intravascular blood slowing and stasis, as well as erythro-
cyte aggregation, is much more severe in the presence of

traumatic shock [36]. The analysis of the certain rheolog-
ical changes caused by the experimental traumatic shock
was conducted by Tatarishvili et al [35]. In total, 40 adult
male laboratory rats were used, of which 20 were used for
experiments and 20 served as controls [35]. Kennon's
method was used to produce traumatic shock. Erythrocyte
aggregability was measured using the "Georgian
technique"[37]. Traumatic shock resulted in significant
changes in all investigated blood rheological parameters
(erythrocyte aggregability, deformation, and systemic
hematocrit). The experimental group of rats showed an
increase in erythrocyte aggregability, which was more
than 2 times higher compared to control animals. How-
ever, the hematocrit and erythrocyte deformability
decreased in experimental rats compared to control ani-
mals [37]. Despite the small sample size, these results
were statistically significant [37]. Tatarishvili et al. con-
cluded that "the blood rheological disorders in the micro-
circulation related in the present experiments should be
considered as a significant factor determining the severity

Curves of the change in the borders of separation between fluid and mixture as a function of time, when values of total velocity of aggregation are differentFigure 4
Curves of the change in the borders of separation between fluid and mixture as a function of time, when values of total velocity 
of aggregation are different. k : 1 - k = 5·10-7; 2 - k = 1·10-6; 3 - k = 5·10-7; 4-experimental curve corresponds to rheumatism; 5 
- k = 1·10-5; 6 - k = 5·10-5. Dotted curves match the results of equations (86), with the border conditions (89) and (90). Hori-
zontal axis: time (minutes); vertical axis: the height of the tube, millimeters.
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of the damage to the tissues during the development of
the traumatic shock" [37].

As mentioned earlier, the ESR measurement might also
become a useful diagnostic test in patients with crush syn-
drome. Disasters, such as earthquakes, are a key source of
victims with crush syndrome. Earthquakes in Armenia in
1988 [38] and in Japan in 1995 have caused multiple
cases of traumatic crush syndrome. [39] Victims of such
earthquakes have been trapped for prolonged periods.
The other possibility for the crush injury and crush syn-
drome is, for example, the severe and transient pressure
that occurs when a limb is run over by a heavy vehicle.
Finally, crush syndrome may also affect patients with
stroke or drug overdose [40]. Such patients could crush a
part of the body with their own weight while uncon-
scious. The lower limbs and, less frequently, upper limbs
are predominant sites of injury in victims with traumatic
crush syndrome. Traumatic crush syndrome caused by a
crush injury to the torso has also been described [39].
Rheological changes caused by traumatic crush syndrome
have been studied in rats that were exposed to 6 hours of
compression of soft tissues on the thigh. Narcotized rats
with crush syndrome were shown to have increased blood
viscosity. In these animals, total peripheral vascular
resistance was shown to correlate well with changes in
blood viscosity at different shear rates. [41]. Rats' blood
viscosity was predominantly determined by erythrocyte
aggregation at low shear. [41] These rats were also divided
into two groups: low resistant and high resistant to shock.
Low resistant animals exhibited high hematocrit and
plasma viscosity and decreased deformability of erythro-
cytes. On the contrary, blood viscosity increased, inde-
pendent of shear rates (10 – 300 sec -1). Severe
hemoconcentration and blood hyperviscosity developed
in all low resistant animals. High resistant rats developed
sufficient hemodynamics and oxygen supply to tissues.
On the other hand, high resistant rats exhibited less signif-
icant hemoconcentration and an increase in blood viscos-
ity [42].

According to our current research, increased ESR in
patients with traumatic shock and crush syndrome is due
to an increased number of rouleaux. Our understanding
of changes in the ESR in traumatic shock or in crush syn-
drome could be summarized as follows: crush syndrome
or traumatic shock (due to hemorrhage) may result in an
increase in peripheral resistance[34,43-45]. Increased
peripheral resistance may result in a decrease in cardiac
output, which subsequently leads to a decrease in blood
flow velocity and, thus, a decrease in yield velocity and
shear stress[46] A decrease in blood flow velocity, due to
trauma, may result in a decrease of erythrocyte adhesive-
ness within rouleaux [46], since even a relatively high
yield velocity (300 m-1) did not result in a significant

decrease in blood viscosity [41,42]. The damage of parti-
cles at different erythrocyte adhesiveness within rouleaux
has been studied in the previous research [47]. From those
experiments it follows that the damage is proportional to
yield velocity [46]. On the other hand, an increased ESR
in patients with traumatic shock and crush syndrome is
due to an increased number of rouleaux, however, as it
has been shown earlier, the quantity of rouleaux is largely
dependent on the quantity of erythrocytes [47]. Going
back to the beginning of the discussion, those rats that
had lower survival (second group) had, according to our
hypothesis, a larger quantity of rouleaux formation, due
to an initially larger quantity of erythrocytes [41,42].

Conclusion
The mathematical model created in our study accounts for
the influence of the vessel wall on group precipitation of
particles in tubes, viscosity of the mixture, constraint and
rotation of particles. The determined viscosity of a mixture
and constraint of particles depend on volume fraction. In
theoretical studies, the difference of curves of precipita-
tion, during the initial and later intervals of time, has been
established.

The theoretical curves of precipitation of particles at vari-
ous values of aggregation coefficient K show that an
increase of K increases the velocity of precipitation. Like-
wise, the presence of the tube wall enhances precipitation
of particles. The Magnus force and the force connected to
acceleration of particles in a relatively liquid phase do not
have a significant effect on the precipitation of particles.
From our experimental and theoretical data, we can con-
clude that the behavior of the curve of velocity of erythro-
cytes depends on the timing of observations (interval of
time is 5 min). Time-course measurements of erythrocyte
precipitation more accurately reflect the state of the
human body than the known determination of velocity of
erythrocytes.

Determination of the ESR should be conducted at certain
intervals of time, i.e. in a series of periods not exceeding 5
minutes each. Differential diagnosis of various pathologi-
cal conditions when ESR is applied can be conducted
using the aforementioned timed method of determining
ESR. Different pathological states, when this method is
used, would have different initial blood viscosity parame-
ters. We have shown that an increase in blood viscosity
during trauma results from an increase in rouleaux forma-
tion. We have shown that the time-course method of ESR
will be relevant in patients with trauma, in particular, with
traumatic shock and crush syndrome. Therefore the
number of rouleaux is dependent on the initial quantity
of erythrocytes and is increasing sharply with the decreas-
ing yield velocity [47] which may result from increased
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peripheral resistance and low cardiac output from trau-
matic shock or crush syndrome.
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