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Abstract
Background: The bioluminescent enzyme firefly luciferase (Luc) or variants of green fluorescent
protein (GFP) in transformed cells can be effectively used to reveal molecular and cellular features
of neoplasia in vivo. Tumor cell growth and regression in response to various therapies can be
evaluated by using bioluminescent imaging. In bioluminescent imaging, light propagates in highly
scattering tissue, and the diffusion approximation is sufficiently accurate to predict the imaging
signal around the biological tissue. The numerical solutions to the diffusion equation take large
amounts of computational time, and the studies for its analytic solutions have attracted more
attention in biomedical engineering applications.

Methods: Biological tissue is a turbid medium that both scatters and absorbs photons. An accurate
model for the propagation of photons through tissue can be adopted from transport theory, and
its diffusion approximation is applied to predict the imaging signal around the biological tissue. The
solution to the diffusion equation is formulated by the convolution between its Green's function
and source term. The formulation of photon diffusion from spherical bioluminescent sources in an
infinite homogeneous medium can be obtained to accelerate the forward simulation of
bioluminescent phenomena.

Results: The closed form solutions have been derived for the time-dependent diffusion equation
and the steady-state diffusion equation with solid and hollow spherical sources in a homogeneous
medium, respectively. Meanwhile, the relationship between solutions with a solid sphere source
and ones with a surface sphere source is obtained.

Conclusion: We have formulated solutions for the diffusion equation with solid and hollow
spherical sources in an infinite homogeneous medium. These solutions have been verified by Monte
Carlo simulation for use in biomedical optical imaging studies. The closed form solution is highly
accurate and more computationally efficient in biomedical engineering applications. By using our
analytic solutions for spherical sources, we can better predict bioluminescent signals and better
understand both the potential for, and the limitations of, bioluminescent tomography in an idealized
case. The formulas are particularly valuable for furthering the development of bioluminescent
tomography.
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Background
Light propagation in scattering media has attracted atten-
tion in many areas of physics, biology, medicine, and
engineering. This process can be described by the radiative
transfer equation [1], which is a complex integrodifferen-
tial equation. Under strong scattering conditions, the radi-
ative transfer equation can be reduced to the diffusion
equation, but this still does not permit exact solutions in
most cases. Recently, various approximate methods for
the radiative transfer equation have been presented [2-5].
Arridge et al. [2] presented a method for handling non-
scattering regions within diffusing domains. The method
develops from an iterative radiosity-diffusion approach
that uses a finite element method. The fundamental idea
is to introduce extra equations into the standard diffusion
finite element method to represent nondiffusive light
propagation across a nonscattering region. Aydin et al. [3]
introduced a two-dimensional, finite element spherical
harmonics radiation transport method for the simulation
of light propagation in tissue. They derived a photon-
transport forward model in turbid media that treats weak
inhomogeneities through a Born approximation of the
Boltzmann radiative transfer equation. This model more
conveniently replaces the commonly used diffusion
approximation in optical tomography [4]. Analytic solu-
tions to the diffusion equation in some simplified cases
have been explored previously [5-7]. Boas et al. [5] pre-
sented a spherical harmonic solution in the case of spher-
ical inhomogeneity in an infinite medium. In this
instance, a closed-form infinite series solution was
obtained. Additionally, they compared their calculations
to experimental results involving a perfect absorber in a
large diffuse region. They observed good agreement
between the experimental and the analytical data. Walker
et al. [6] extended the above spherical results to cylindrical
inhomogeneity. Fishkin et al. [7] derived analytical
expressions based on the diffusion approximation that
describe the photon density in a uniform, infinite,
strongly scattering medium that contains a sinusoidally
intensity-modulated point source of light. They also
reported good agreement between their analytical and
experimental results. However, these solutions to the dif-
fusion equation were derived for a point source only.

Recently, light propagation in scattering media has
attracted increased attention in biomedical applications
[8], especially in bioluminescent imaging as applied in
bioluminescent tomography. The bioluminescent
enzyme firefly luciferase (Luc) or variants of green fluores-
cent protein (GFP) in transformed cells can be effectively
used to reveal molecular and cellular features of neoplasia
in vivo. Tumor cell growth and regression in response to
various therapies can be evaluated by using biolumines-
cent imaging. With a number of key collaborators, we are
developing a bioluminescent tomography system for the

3D reconstruction of a bioluminescent source distribu-
tion in a living animal marked by bioluminescent reporter
luciferases from diffuse signals detected on a spherical sur-
face containing the animal. In bioluminescent experi-
ments, the density of the bioluminescent signals decay
exponentially with time. Actually, bioluminescent imag-
ing is a time-dependent problem. In this paper, we formu-
late solutions to the time-dependent diffusion equation
and the steady-state diffusion equation with solid and
hollow spherical sources, respectively, in an infinite
homogeneous medium. These formulas are then verified
in a Monte Carlo simulation performed using a commer-
cial software package, TracePro. The solution to the diffu-
sion model in a homogeneous medium can be used to
achieve reasonably good qualitative estimates of the sig-
nal level and can be applied to estimate rapidly the posi-
tions of light sources for bioluminescent imaging. The
closed form solution is highly accurate and more compu-
tationally efficient in biomedical engineering
applications.

Methods
The radiative transport equation in a media that scatters
and absorbs photons is

L(r, s, t) is the radiance (the power per unit area and unit
solid angle) at position r, traveling in direction s, at time
t, in the unit of W/(m2•sr). C is the speed of light in the
medium. µt = µs + µa is the optical transport coefficient,
where µs is the scattering coefficient, and µa is the absorp-
tion coefficient. S(r, s, t) is the spatial and angular distri-
bution of the source in the unit of W/(m3•sr). The
normalized phase function p(s', s) represents the proba-
bility of scattering in a direction s' from direction s. The
photon fluence is given by

The photon flux or current density is given by

Both the fluence and the flux are in units of W m-2. The
transport equation can be regarded as a conservation
equation for the radiance; it neglects coherence and polar-
ization effects.

In vivo experimental light propagates in a highly scattering
tissue in which the scattering coefficient is much greater
than the absorption coefficient, and the diffusion approx-
imation is sufficiently accurate. In the P1 approximation,

∂
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the radiance is expanded in spherical harmonics truncated
to the first order, and the radiance equation can be
reduced to the diffusion equation [5,9]

where Φ(r, t) is the photon fluence rate; D = {3[µa + (1 -
g)µs]}-1 is the diffusion coefficient; g is the anisotropy
coefficient. Analytic solutions to the diffusion equation
are difficult to obtain in most cases and its numerical solu-
tions take large amounts of computational time. By set-
ting S(r, t) = δ(r, t), the time-domain Green's function for
an infinite homogeneous medium is given by

The Green's function (5) helps to further simplify the
computation of the diffusion equation (4). The solution
to the diffusion equation for a general source term S(r, t)
is given by the convolution between S(r, t) and the
Green's function Γ(r, t):

In the following section, we analytically solve for the pho-
ton diffusion with spherical sources embedded in an infi-
nite homogeneous medium.

Solution for a spherical surface source
A spherical source with photon power uniformly distrib-
uted on the surface is defined by

where p is the source power; R is the radius of the spheri-
cal source; and ω is the decay coefficient of the source
power related to time.

In the spherical coordinates, the convolution integral (6)
becomes

Integrating with respect to the angular variables θ and φ,
Eq. (8) becomes

Letting r ≥ R, ,
we have

Comparison of flux computed on a spherical surface in the first experimental setting according to the solutions for spherical surface and solid sources, respectivelyFigure 1
Comparison of flux computed on a spherical surface in the 
first experimental setting according to the solutions for 
spherical surface and solid sources, respectively.

Comparison of flux computed on a spherical surface com-puted in the second experimental setting according to the solutions for spherical surface and solid sources, respectivelyFigure 2
Comparison of flux computed on a spherical surface com-
puted in the second experimental setting according to the 
solutions for spherical surface and solid sources, respectively.
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where

, and .

Solution for a spherical solid source
A spherical solid source with a radially and exponentially
decreasing power density is defined by

where p is the source power; R is the radius of the spheri-
cal source; ω is the decay coefficient of the source power
related to time; and β is the exponential decay coefficient
related to the radius of the spherical source.

The convolution integral (6) becomes

Integrating with respect to the angular variables θ and φ,
and changing the order of integration, Eq. (12) becomes

Setting r ≥ R, ,

Φ(r, t) can be expressed as

Performing an integration around variable t', we obtain

Integrating with respect to variables r', we obtain

where

and E(R, k, a, b) is defined as

Comparison of flux computed on a spherical surface in the first experimental setting based on the analytic solution and the Monte Carlo simulation, respectivelyFigure 3
Comparison of flux computed on a spherical surface in the 
first experimental setting based on the analytic solution and 
the Monte Carlo simulation, respectively.
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Comparison of flux computed on a spherical surface in the second experimental setting based on the analytic solution and the Monte Carlo simulation, respectivelyFigure 4
Comparison of flux computed on a spherical surface in the 
second experimental setting based on the analytic solution 
and the Monte Carlo simulation, respectively.
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Setting β = 0, we obtain the solution for a spherical solid
source with a constant power density as follows:

where

Solutions to the steady-state diffusion equation
Similarly, expressing the solution of the steady-state diffu-
sion equation as the convolution between S(r, t) and its
Green's function, and simplifying the convolution, the
solutions to the steady-state diffusion equation can be
easily derived for spherical surface and solid sources,
respectively. In this case, the solution for a spherical sur-
face source can be shown to be

and the solution for a spherical solid source can be
expressed as

where p is the source power; R is the radius of the spheri-
cal source; and µeff denotes the effective attenuation coef-
ficient defined as µeff = (µa /D)1/2 = [3 µa (µa + µs (1 - g))]1/2.

Results
To verify the correctness of the above analytic results, two
sets of computer simulation experiments were performed
using the well-known MatLab and a commercial software
package, TracePro (Lambda Research Corp., Littleton, MA,
USA; http://www.lambdares.com/products/tracepro/
index.phtml). The first set of tests examined the relation-
ship between the solutions for spherical surface and solid
sources. The other set of tests demonstrated good agree-
ment between the analytically computed and the Monte
Carlo simulated data.

Comparison between solutions for spherical 
solid and surface sources
The numerical tests were conducted with various parame-
ters using solutions for spherical surface and solid sources.
In the first experimental setting, a spherical solid source of
radius 1 mm with power 0.0002513 (W) was embedded
in an infinite homogeneous medium. The medium was
defined by µs = 40.3 mm-1, µa = 0.15 mm-1, n = 1, and g =
0.994. In the second setting, a spherical solid source of

radius 0.3 mm with power 0.0002513 (W) was assumed,
with a medium of µs = 10.27 mm-1, µa = 0.082 mm-1, n =
1.37, and g = 0.96. Figs. 1 and 2 present some typical ana-
lytically calculated outcomes. These results indicate that
the directly computed data using the solution formula for
a spherical solid source are in an excellent agreement with
their counterparts indirectly computed using the solution
for a spherical surface source. In other words, the two
solutions are consistent.

Comparison between analytic solution and 
Monte Carlo simulation
In the following two numerical experimental settings, the
optical parameters of the medium were set at µs = 23 mm-

1, µa = 0.35 mm-1, n = 1, and g = 0.94, the same as the opti-
cal parameters of a mouse lung. The source, a sphere with
a radius of 1.3 mm and power 0.00025 (W), was embed-
ded in an infinite homogeneous medium. The power inci-
dence on the spherical surfaces with different radii was
computed by using the solution formulas and the Monte
Carlo method as implemented in TracePro, respectively.
Comparison of the two is shown in Fig. 3. In the other
numerical experiment, the optical parameters of the
medium were µs = 16 mm-1, µa = 0.20 mm-1, n = 1.37, and
g = 0.85, the same as the optical parameters of a mouse
heart. The source is a sphere of radius 1 mm with power
0.00025 (W). Fig. 4 presents a comparison of the analytic
results and the simulated data from TracePro. It can be
observed that there is good agreement between the com-
puted and the simulated data.

Discussions and conclusion
The primary utility of our analytic solutions is to acceler-
ate the forward simulation of bioluminescent phenomena
which will facilitate studies on bioluminescent tomogra-
phy. The spherical sources we assumed are the most fun-
damental building blocks of the physical phantoms used
in the evaluation of image quality. By using our analytic
solutions for spherical sources, we can better predict bio-
luminescent signals and better understand both the
potential for, and the limitations of, bioluminescent tom-
ography in an idealized case.

In conclusion, we have formulated solutions for the diffu-
sion equation with solid and hollow spherical sources in
an infinite homogeneous medium. These solutions have
been verified by Monte Carlo simulation for use in bio-
medical optical imaging studies. The formulas are partic-
ularly valuable for furthering the development of
bioluminescent tomography.
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