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Abstract

Background: Computer technology enables realistic simulation of cardiovascular
physiology. The increasing number of clinical surgical and medical treatment options
imposes a need for better understanding of patient-specific pathology and outcome
prediction.

Methods: A distributed lumped parameter real-time closed-loop model with 26
vascular segments, cardiac modelling with time-varying elastance functions and
gradually opening and closing valves, the pericardium, intrathoracic pressure, the
atrial and ventricular septum, various pathological states and including oxygen
transport has been developed.

Results: Model output is pressure, volume, flow and oxygen saturation from every
cardiac and vascular compartment. The model produces relevant clinical output and
validation of quantitative data in normal physiology and qualitative directions in
simulation of pathological states show good agreement with published data.

Conclusion: The results show that it is possible to build a clinically relevant real-time
computer simulation model of the normal adult cardiovascular system. It is
suggested that understanding qualitative interaction between physiological
parameters in health and disease may be improved by using the model, although
further model development and validation is needed for quantitative patient-specific
outcome prediction.

Keywords: Cardiovascular simulation, Time-varying elastance functions, Lumped
parameter model, Valve model, Oxygen transport model, Computer simulation
Background
The increasing number of surgical and medical treatment options in cardiovascular

disease imposes a need for better understanding of patient-specific pathology and out-

come prediction. Due to the complexity of the cardiovascular system, it is not always

possible to understand the role of every cardiovascular parameter; additionally, predic-

tion of the hemodynamic features can be even more challenging when several of those

parameters change simultaneously. In many cases the use of simulation models can

improve the understanding of both normal physiology and pathophysiology. Moreover,

clinical training in simulation centres, where simulation models have been connected
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to mannequins responding to therapeutic measures, has proved to further increase

diagnostic and therapeutic accuracy [1].

Other authors [2] have published complex hemodynamic models based on a reduc-

tionistic approach, where contractions are based on cellular properties including elec-

trophysiology, ion channels, myofilament structure and fiber orientation. These models

are relevant for exploring normal and disturbed contractile mechanisms as well as inte-

grated organ function. The computational load in 3D models is however presently too

large to allow clinical and educational use in studies of central hemodynamics. Simpler

models based on cellular properties [3] tend to be less relevant on higher explanatory

levels when studying integrated properties of the entire cardiovascular system, although

being computationally less demanding.

Models focusing on particular aspects of hemodynamics such as mitral valve dynam-

ics [4], remodeling of heart and vessels [5], individual drug effects [6] and effects of

therapeutic measures such as positive end-expiratory pressure (PEEP) [7] offer good ex-

amples of how cardiovascular simulation models can be validated in specific situations

and used clinically. It is however difficult to know to what extent these models can be

used in clinical situations other than those described in the articles.

The aim of this paper is to present a closed-loop, real-time, lumped parameter car-

diovascular simulation model, which includes the behavior of the four cardiac cham-

bers, interatrial and interventricular septum, pericardium, intrathoracic pressure

changes, heart valves, intracardiac shunts and vascular system. The current model is

based on previous publications [8,9]. The circulatory system interacts with pericardial

as well as intrathoracic pressures as in one of the previous models [9] and several

improvements have been made. The vascular system has been expanded and the circu-

latory system closed in order to reach more realistic steady state output when parame-

ters in the model are changed. The systolic cardiac model is replaced in order to more

realistically simulate cardiac work and valvular timing. Passive diastolic properties are

now non-linear [10] resulting in more realistic changes of filling pressures with ven-

tricular dilatation. Atrial septal interactions are included in addition to a modified ven-

tricular septum [9]. The valves are gradually opening and closing [11] and adjustment

of valvular properties therefore allow more realistic simulation of both stenotic and

regurgitant valves. Potential atrial septal defects, ventricular septal defects and persist-

ent ductus arteriosus have been included. An oxygen transport model allowing studies

of oxygen delivery and uptake including myocardial oxygen balance have been devel-

oped. The most unique feature of this model is however not any particular advanced

modeling solutions in each sub-part, but rather the holistic approach giving a compre-

hensive overview of cardiovascular hemodynamics in health and disease. The possibility

to change the model parameters one by one facilitate understanding in educational

sessions, but real-time simulation and fast feed-back after parameter changes are also

important features in a clinical decision support scenario in cardiac surgery and

intensive care.

The model is presented from a normal cardiovascular physiological point of view, but

a limited number of pathological scenarios will also be shown. A secondary aim is to

show that the model generates valid output, which is consistent with earlier published

clinical and experimental data, focusing on the behavior of the entire system rather

than on single variables.



Broomé et al. BioMedical Engineering OnLine 2013, 12:69 Page 3 of 20
http://www.biomedical-engineering-online.com/content/12/1/69
Methods
General overview of the model

The model (Figure 1) is based on the following compartments: the four cardiac chambers

and corresponding valves, the pericardium, the systemic circulation consisting of the aortic

root, ascending aorta, proximal aortic arch, right carotid/subclavian artery, distal aortic arch,

left carotid/subclavian artery, descending aorta and the representation of a peripheral arter-

ial system (See also electrical analogue in Additional file 1: Figure S1). The peripheral arterial

system contains resistance arteries (arteriolae), capillaries and small veins emptying into the

inferior caval vein, while the two carotid/subclavian arteries in a similar way end up in the

superior caval vein. The pulmonary circulation is represented by the main pulmonary trunk,

pulmonary resistance arteries (arteriolae), capillaries, small veins and pulmonary veins

emptying into the left atrium. Two coronary vessels are also included. Input to the vascular

model are physical dimensions [12,13], tissue properties and number of parallel vessels in

each compartment modified to fit the anatomical structure of the present vascular model;

while pressure, flow, volume and oxygen saturation are simulated outputs and can be

displayed. The cardiac, valvular, pericardial and vascular properties can be modified in detail

by changing the parameters presented in the supplement (Additional file 2: Table S1-5).

Model complexity is chosen to enable future simulations of central hemodynamics in major

congenital and acquired circulatory pathologies and extra-corporeal circulatory support.

Cardiac model

The heart chambers

The four cardiac chambers passive and active properties are modeled with separate

time-varying elastance functions based on the “Double-Hill equation” as previously
Figure 1 Sketch showing the cardiac and vascular components of the simulation model. The dark
yellow area is the pericardium containing the cardiac chambers and coronary vessels. The light yellow area
is the intra-thoracic space containing the pericardium, the pulmonary circulation and the thoracic aorta. The
extra-thoracic space contains the carotid/subclavian circulation in the upper part and the rest of the
systemic circulation in the lower left part.
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described [11,14] including a slightly modified Starling mechanism (Figure 2) [8]. The

model includes internal chamber flow resistance and viscous wall properties of the

heart, in accordance with previous models [9,11]. Details are shown in the cardiac

model section of the supplement.

By using a continuous function through the cardiac cycle manual setting of valvular

timing [9] is avoided. Each cardiac chamber has its own elastance function of realistic

shape (Additional file 3: Figure S3). Timing and duration of contractions in the cardiac

chambers can be set independently, in order to create variable atrioventricular (AV)

and interventricular (VV) intervals as well as realistic timing of valve opening and closure.

Thereby the model offers additional opportunities to simulate arrhythmias as well as

interventricular dyssynchronicity. As an example atrial fibrillation can be simulated by

turning off atrial contractions and randomizing the time between ventricular contractions.

The electrocardiogram (ECG) (Additional file 4: Figure S4; Additional file 5: Figure

S5) is simulated by summing the four cardiac elastance functions with a linear weight

factor, based on the approximate distance from each cardiac chamber to the chosen

surface ECG lead assuming an electromechanical delay of 60 ms. The ECG does not by

itself influence the simulated physiology and is included as an output of the model only

to add clinical realism during educational sessions, therefore the detailed algorithms

are not described.

The heart valves

Valve pressure gradients are composed of a Bernoulli resistance and an inertial term

(Additional file 2: Equation S4 and Figure S6 of Additional file 6) as earlier described

[8,9]. Minimum and maximum valvular areas can be set to simulate valvular stenosis

and regurgitation. The valve areas change gradually (Additional file 4: Figure S4) as a

function of pressure gradients and valve inertial constants [11] as is shown in the
Figure 2 Left ventricular pressure-volume loops during a preload reduction maneuver in a case
with slightly reduced left ventricular function (Emax 1.4 and Emin 0.08). The diastolic and end-systolic
pressure-volume relations are shown in thin black lines. The end-systolic line is curved due to the “heart law
of Starling” reducing contractile strength during volume overload according to Additional file 2: Equation
S2. The curved end-diastolic relation illustrates the increase in passive stiffness when the ventricle is dilated
according to Additional file 2: Equation S3.
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supplement (Additional file 2: Table S4). Blood flow inertance L is determined by dens-

ity ρ, the variable inflow length l and the valve area A (Equation 1). Inflow length l is

set to a value identical to the instantaneous diameter of the valve in contrast to the

constant value in Mynard et al. [11].

L ¼ ρ⋅l
A

¼ ρ⋅2⋅r
π⋅r2

¼ ρ⋅2
π⋅r

ð1Þ

The atrial and ventricular septum

The interventricular septal displacement is simulated using pressure transmission

through the muscular septum as previously described [9,15] (Equation 2). As a further

development the ventricular septal stiffness Esv is modeled in order to increase in pro-

portion to the left ventricular systolic elastance elv(t) (Equation 3), thereby stiffening

during contraction, in accordance with known physiological characteristics. Additional

file 5: Figure S5 shows the ventricular septal shift at different stiffness.

plv ¼
Esv

Esv þ elv
⋅elv⋅vlv þ elv

Esv þ elv
⋅prv ð2Þ

Esv ¼ Esv0⋅elv tð Þ ð3Þ

Atrial septal interaction is modeled in a similar way. The septal interaction does not
give any significant contribution during normal physiology in apnea, but is important

when simulating interventricular dyssynchrony, variations in intrathoracic pressures in-

cluding artificial ventilation and changes in ventricular loading conditions.

The pericardium

In order to resemble pericardial function in health and disease a user-defined exponen-

tial function relating intra-pericardial pressure to total heart volume is adopted from

the literature [9] (Additional file 7: Figure S7). As a further development of the previous

model the minimal pericardial pressure is allowed to be a negative value in agreement

with what is found experimentally when measured during intrathoracic pressure

changes or hypovolemia [16]. Further details can be found in the supplement.

Intracardiac and arteriovenous shunts

Atrial septal defects, ventricular septal defects and persistent ductus arteriosus flows are

calculated according to Equation 4, with instantaneous flow Q proportional to the area A

of the defect, the square-root of the pressure difference ΔP and the Gorlin empirical con-

stant C assumed to be 1 [17]. Acceleration g due to gravity is set to 980 cm/s2.

Q ¼ C⋅A⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2⋅g⋅ΔP

p
¼ 44:3A⋅

ffiffiffiffiffiffi
ΔP

p
ð4Þ

Vascular model

The systemic circulation

Transmural pressure p in each vascular compartment is related to the variable

segmental vascular volume v according to an exponential relation (Additional file 2:

Equation S7, Additional file 8: Figure S12) [9] creating an increase in stiffness with pro-

gressive distension of the vascular wall.
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Resistance R0, inertia I0, and elastance E0 at normal mean pressure P0 are calculated

from published and estimated vascular properties [12,13], and relations [18] described

in Equations 5–7. These vascular properties are all approximately inversely propor-

tional to n, which is the number of parallel vessels, lumped into each compartment

[18]. The parameter η is blood viscosity, l, r0 and h is the length, radius and thickness

of a single vessel respectively and ρ is blood density.

R0 ¼ 8⋅η⋅l
π⋅r04⋅n

ð5Þ

I0 ¼ ρ⋅l
π⋅r20⋅n

ð6Þ

E0 ¼ Y inc⋅h
2⋅π⋅r30⋅l⋅n

ð7Þ

The same value of Young’s modulus Yinc is used in every vascular segment, implying

that vascular stiffness properties are solely explained by this constant and vascular di-

mensions. The actual volume-dependent segmental elastances, resistances and inertias

are updated in each calculation step based on the volume and radius assuming constant

vessel length and thickness. Details can be found in the blood vessels section of the

supplement (Additional file 2: Table S5-7).

The resistance Ω, in series with the capacitor situated in parallel to the blood flow in

every vascular segment, corresponds to the viscous property of the vascular wall, damp-

ening the flow pulse. The parameter value assigned to this component is calculated as

in Equation 8 with addition of a scaling factor λ as compared to the characteristic im-

pedance in a classical 3-component Windkessel model [19,20].

Ω ¼ λ⋅
ffiffiffiffiffiffiffiffi
L⋅E

p
ð8Þ

The same formula was used to calculate Ω in every vascular segment as previously sug-
gested [19], although the name characteristic impedance is less well suited in a distributed

model. A scaling factor λ between 0.0 and 1.0 is used to tune the vascular damping prop-

erties. The effects of changing the scaling factor λ can be seen in Figure 3.

The systemic capillaries and veins are described by the same principal vascular model

as the arteries although inertial effects are of less importance due to lower pulsatility

[21] and a larger cross-sectional area. Every single vessel has high resistance and stiff-

ness; however the large amounts of vessels in parallel lumped into each compartment

result in both a low resistance (Equation 5) and a low elastance (Equation 7),
Figure 3 Effects of changing vascular damping factor λ on cardiac and vascular pressures
(peripheral artery (light red), ascending aorta (dark red), left ventricle (red), pulmonary artery
(orange), right ventricle (yellow), left atrium (brown), right atrium (blue)) related to the viscous
properties of the vascular walls. Very low values results in numerical instability in the model. A value of
0.5 is chosen in all presented simulations.
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corresponding to high compliance and being related to their physiological volume res-

ervoir function. The distribution of the blood volume between arteries, capillaries and

veins in the systemic and pulmonary circulation in the model is shown in Additional

file 2: Table S7.

The pulmonary circulation

The pulmonary artery, resistance vessels, capillaries and veins are modeled as in the sys-

temic circulation. An adjustable pulmonary shunt mimics the circulation without gas

exchange due to anatomical anomalies or ventilation-perfusion disturbances as in

atelectatic lung tissue.

The coronary circulation

Coronary circulation is simulated with a left and right coronary artery emptying in the

right atrium as described in the supplement (See also Additional file 9: Figure S8).

Myocardial oxygen consumption is calculated according to the pressure-volume area

concept of Suga et al. [22] on a beat-by-beat basis and estimations of myocardial oxy-

gen balance can therefore be calculated based on both supply and demand.

Oxygen transport

Blood oxygen content in every compartment is calculated as a constant multiplied by

the hemoglobin (Hb), the oxygen saturation (Sat) and the volume of the compartment

(Volume) as in clinical routine and most catheterization laboratories [23] (Equation 9).

C ¼ 0:0000136⋅Hb⋅Sat⋅Volume ð9Þ

Oxygen saturation within each compartment is considered homogenous and oxygen

transport between compartments is proportional to blood flow, hemoglobin level and

saturation. Calculations concerning blood mixing are simplified as effects of blood jets,

incomplete mixing and physically dissolved oxygen not are taken into account.

Baroreceptor reflex

A baroreceptor reflex can be activated in the model that affects heart rate, cardiac con-

tractility (maximum elastance) and arterial vascular resistance as in Sun et al. [9] and

described in the baroreceptor section of the supplement.

Simulation

The simulator was compiled as a stand-alone software developed in Visual Basic.NET

2010 (Microsoft Corporation, Redmond, WA, USA) and .NET Framework 4.0

(Microsoft Corporation, Redmond, WA, USA). A time step of 0.25 ms was used to as-

sure stability. The implemented 62 differential equations were solved with an implicit

Euler numerical method [24]. Mean values were calculated as running arithmetical

means to simplify calculations and conserve memory resources. The program version

used was Aplysia CorVascSim 4.4.0.62 (Aplysia Medical AB, Stockholm, Sweden). The

model can be run in real-time on a standard personal computer (example: Intel pro-

cessor Core i3 3.06 GHz, RAM 3 Gb, Graphics ATI Radeon HD4550, Windows 7 32/

64-bit).
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Parameter settings in simulations of normal physiology, systolic heart failure, diastolic

heart failure, aortic stenosis, aortic regurgitation, a Valsalva maneuver, exercise and

progressive arteriosclerosis

All hemodynamic data were presented with zero intrathoracic pressure in order to resem-

ble end-expiratory values. With the basic set of parameters presented in the supplement

an adult man weighing 70 kg is described with a blood volume of 5600 ml (80 ml/kg),

blood viscosity of 0.00024 mmHg · s and blood density of 1.060 g/cm3. Systolic left

ventricular heart failure was simulated by decreasing the maximum elastance from 2.8 to

1.0 mmHg/ml. Diastolic left ventricular heart failure was simulated by increasing the basal

passive diastolic elastance Emin from 0.05 to 0.12 mmHg/ml. Aortic stenosis was simu-

lated by decreasing the open aortic valve area from 5.0 to 0.7 cm2. Aortic regurgitation

was simulated by increasing the closed aortic valve area from 0.0 to 0.2 cm2. Simulation

of a Valsalva maneuver was accomplished by increasing intrathoracic pressure from 0 to

10 mmHg for approximately 20 seconds with and without baroreceptors activated. All

other parameters and settings were identical.

The stepwise simulation of exercise was accomplished by increasing heart rate from

72 to 144 min-1, increased left and right ventricular contractility by 50% and increased

systemic and pulmonary resistance arterial diameters by 50%. The cardiac elastance pa-

rameters α1 and α2 were scaled with the square-root of the factor changing the heart

rate to preserve a realistic relation between systolic and diastolic times. The vascular

damping scaling factor λ was set to 0.5 in all vascular segments and presented simula-

tions. The oxygen saturation in the pulmonary capillaries was set to 99.4%, correspond-

ing to a normal alveolar pO2 of 13.3 kPa and the pulmonary shunt was set to 10% of

cardiac output in all presented simulations. Hemoglobin level was set to 140 g/l and

systemic oxygen consumption to 250 ml/min in addition to myocardial oxygen extrac-

tion. A Young’s modulus Yinc of 3000 mmHg (= 0.40 MPa) similar to the value in

Wang et al. [12] was used to calculate the vascular elastance E0 at the vessel-specific

normal mean pressure P0 (see Additional file 2: Table S5) in all simulations above. A

progressive arteriosclerotic process was simulated by changing vascular stiffness in all

vascular segments through variations in Young’s modulus Yinc between 2000 and

6000 mmHg. Note that comparisons with real clinical cases will not be performed due

to unknown patient-specific secondary adaptations.

Sensitivity analysis

The relation between changes in input parameters x and model output variables y was

studied with a sensitivity analysis during simulation of normal physiology (Additional

file 10). Input parameters were increased 10% one by one. Seven model output variables

[left ventricular end-systolic pressure (LVESP), right ventricular end-systolic pressure

(RVESP), left atrial pressure (LAP), right atrial pressure (RAP), left ventricular stroke

work (LVSW), right ventricular stroke work (RVSW) and cardiac output (CO)] focusing

on cardiac function were evaluated after 60 seconds assuring a hemodynamic steady-

state. Sensitivity S was calculated according to Equation 10.

S ¼ Δy
Δx

ð10Þ
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Results
Overall, the direction and magnitude of the changes in output variables and curve

shapes were within a plausible clinical range in the simulated cases. The specific data

for each case is presented below.
Normal physiology

Running the model with basal settings representative of a 30 years old healthy man

resulted in cardiac output 5.09 l/min, systemic arterial blood pressure 112/61(79) mmHg,

pulmonary arterial pressure 24/8(11) mmHg, mean right atrial pressure 4 mmHg and

mean left atrial pressure 5 mmHg. The model output of pressures (Figure 4 and

Additional file 11: Figure S9), volume-flow rates (Figure 5 and Additional file 12: Figure S10)

and timing within the cardiac chambers and the systemic and pulmonary circulatory parts

created by the model resembled in pattern and magnitude the ones found in clinical

practise (Table 1).

The shapes and areas (stroke work) of the ventricular pressure-volume loops

(Additional file 13: Figure S11a) as well as right and left ventricular ejection fraction were

within normal limits [25] (Table 1). The atrial loops (Additional file 13: Figure S11b) were

similar to the scarce published data [26].
Systolic heart failure

The simulation of systolic heart failure resulted in decreased left ventricular ejection

fraction, stroke work, stroke volume and systolic pressure, while left ventricular end-

diastolic volume and filling pressures increased (Figure 6 and Table 2).
Figure 4 Left ventricular (red), aortic root (pink) and left atrial pressure (brown) during two heart
cycles. An early diastolic as well as a late positive ventriculo-atrial pressure gradient results in the mitral
E and A-waves respectively. A post-ejection aortic pressure incisura is seen corresponding to aortic valve
closure followed by a “reflected” wave.



Figure 5 Aortic valve flow (red), mitral valve flow (brown) and pulmonary vein flow (purple). Small
regurgitant flows are seen when the valves are closing. A minimal reversal of pulmonary vein flow is seen
corresponding to the left atrial contraction (mitral A-wave).
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Diastolic heart failure

The simulation of diastolic heart failure showed preserved left ventricular ejection frac-

tion, but decreased stroke work, end-diastolic volume, stroke volume and systolic pres-

sure, while left ventricular filling pressures increased (Figure 7 and Table 2).
Aortic stenosis

The simulation of aortic stenosis resulted in decreased left ventricular ejection fraction,

stroke volume and systemic blood pressure, although left intraventricular pressure and

stroke work increased (pressure-load). Left ventricular end-diastolic volume and filling

pressures increased (Figure 8 and Table 2).
Aortic regurgitation

Simulated data of aortic regurgitation showed apparent left ventricular ejection fraction

and stroke volume increase, systemic blood pressure decrease although stroke work in-

creased (volume-load). Left ventricular end-diastolic volume and filling pressures in-

creased (Figure 8 and Table 2).
Valsalva

The simulation of a Valsalva maneuver without and with activated baroreceptor reflex

is shown in Figure 9. The sudden decrease in afterload with preserved preload when in-

creasing intrathoracic pressure [27] is the explanation for the initial rise in arterial pres-

sure as indicated in the figure. The opposite effect was seen immediately after decreasing

intrathoracic pressure. Arterial blood pressure was as expected better preserved when the

baroreceptor reflex was activated due to increase in heart rate, ventricular contractility

and systemic arterial resistance.



Table 1 Results from a simulation of a healthy man (age 30 years, weight 70 kg, 170 cm)
compared to published normal values [13,25]

Global Unit Normal values Simulated normal case

Heart rate min-1 69 ± 17 72

Cardiac output l · min-1 6.3 ± 2.4 5.09

Stroke volume ml 89 ± 30 71.6

Systolic arterial pressure mmHg 112/74 (87) 112/61 (79)

Pulmonary arterial pressure mmHg 22/9 (14) 24/8 (11)

Myocardial volume ml 374 ± 110 380

Maximum total heart volume ml 762 ± 133 737

Total blood volume ml 5105 ± 578 5600

Systemic arterial volume % 11.4 7.0

Systemic capillary volume % 5.4 4.4

Systemic venous volume % 70.0 71.9

Pulmonary blood volume % 8.1 10.7

Pulmonary capillary volume % 2.5 2.2

Systemic arterial O2 saturation % 96.4 ± 0.5 96.2

Mixed venous O2 saturation % 70 ± 5 68.3

Coronary sinus O2 saturation % 32 ± 8 28.6

Left ventricle

Ejection fraction % 59 ± 4 67

Stroke work mmHg·ml 5600 ± 1000 6735

End-systolic elastance mmHg·ml-1 3.51 ± 1.26 2.43

Preload recruitable stroke work mmHg 123 ± 36 88.8

dp/dtmax mmHg·s-1 1840 ± 327 2359

dp/dtmin mmHg·s-1 −1864 ± 390 −2666

Tau ms 33 ± 8 18

End-diastolic volume ml 123 ± 28 106.8

LA volume min -– max ml 29.9 -– 76.7 55 -– 81

LAP mmHg 8.3 ± 2.5 4.8

LV Tei — 0.39 ± 0.05 0.41

LV Ees/Ea — 1.62 ± 0.80 1.78

Right ventricle

RV EF % 61.0 ± 5.8 68

RVSW mmHg·ml 1980 1706

RV Ees mmHg·ml-1 0.66 0.51

RV dpdtmax mmHg·s-1 422 ± 46 538

RV dpdtmin mmHg·s-1 −355 ± 45 −289

RV Tau ms — 33

RV EDV ml 111 ± 22 105.6

RA volume min -– max ml — 49 -– 78

RAP mmHg 4.8 ± 2.4 3.7

RV Tei — 0.28 ± 0.05 0.13

RV Ees/Ea — — 1.14

Values are presented as mean ± standard deviation when available.
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Figure 6 Intracardiac pressure-volume loops from the left ventricle (left panel) and left atrium
(right panel) in simulation of pure systolic left heart failure (Emax 2.8→ 1.0). Stroke volume and blood
pressure decrease. Left ventricular and atrial volumes as well as filling pressures increase.
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Exercise

The stepwise simulation of exercise is shown in Figure 10. Starting from a resting state,

heart rate and cardiac contractility is increased followed by reductions in systemic and

pulmonary vascular resistance resulting in a total cardiac output above 10 l/min.
Arteriosclerosis

The presence of arteriosclerosis, simulated by increased vascular stiffness, resulted in

increased systolic aortic pressure and decreased diastolic aortic pressure. A decrease in

systolic ejection time during this process is indicated by the premature arrival of the

reflected pressure wave changing the shape of the pressure curves in a characteristic

way (Figure 11).
Sensitivity analysis

Blood volume was the single most important parameter in the sensitivity analysis

(Additional file 10). The pericardial volume constant v_pc0 was second most important.

Pulmonary arteriolae radius (radius_pur) was more important than systemic arteriolae

radius (radius_r). Right ventricular passive diastolic stiffness (e0_rv) and systolic con-

tractility (emax_rv) was more important than their left sided equivalents (e0_lv and

emax_lv, respectively). Parameters with less than 10% sensitivity are not shown.
Discussion
This work presents a closed-loop real-time lumped parameter simulation model of the

cardiovascular system where normal physiology and oxygen transport as well as systolic

heart failure, diastolic heart failure, valve failure, intracardiac shunts and pulmonary

failure can be simulated separately or in combination.

The validation and appreciation of clinical relevance of the model is based on empir-

ically relevant changes in simulated clinical parameters when being compared with

measurements made by clinically available methods such as intravascular pressure cath-

eters and ultrasound. It is not possible to validate the large number of parameters



Table 2 Key observations during simulation of pathological states

Case HR SAP LAP LVEF LVSV LVSW LVEDV LVESP

min-1 mmHg mmHg % ml mmHg·ml ml mmHg

Normal physiology 72 112/61(79) 4.8 67 71 6735 107 94

Systolic heart failure 72 84/51(62) 8.1 39 52 3499 133 77

Diastolic heart failure 72 90/53(66) 9.2 69 66 4194 83 72

Aortic stenosis 72 89/55(68) 7.1 46 58 9117 126 181

Aortic regurgitation 72 110/42(65) 7.1 76 101 8842 133 83

HR heart rate, SAP systemic arterial pressure, LAP left atrial pressure, LVSV left ventricular stroke volume, LVSW left
ventricular stroke work, LVEDV left ventricular end diastolic volume, LVESP left ventricular end systolic pressure.
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unambiguously with available clinical and/or experimental data, but when taking the

complexity of the system into account and the variety of disease states that can be sim-

ulated, the clinical relevance becomes a powerful validation and hypothesis creating

tool. Another approach to challenge the adequacy of a cardiovascular simulation model

is to study if model responses are adequate when evaluating model output in new sce-

narios with pathological states not previously tested during construction and tuning of

the model. We have chosen to present model output illuminating a range of normal

and pathophysiological states, illustrating the wide scope of the model. The normal

resting state, the Valsalva maneuver and physiological changes during exercise are parts

of normal physiology that should be handled correctly by a multi-purpose cardiovascu-

lar simulation model. The pathophysiological states chosen represent important clinical

problems with various backgrounds. Notable is that very few parameter changes are

needed to simulate the basic features of these states. Further parameter changes are

needed to simulate secondary compensatory adaptations such as e.g. ventricular hyper-

trophy in aortic stenosis. This can be automatized in a simulation model [5], but

manual stepwise adaptation often enables a better understanding of the relation be-

tween the primary problem and its consequences. The lack of secondary changes such

as blood volume increase and systemic vasoconstriction usually seen in clinical cases

with low cardiac output can also explain the small increase in filling pressures seen in

simulation of heart failure and aortic valve failure in the present work.
Figure 7 Intracardiac pressure-volume loops from the left ventricle (left panel) and left atrium
(right panel) in simulation of diastolic heart failure (Emin 0.05→ 0.12). Stroke volume and blood
pressure decrease. Left ventricular volume decreases, while left atrial volume and filling pressures increase.



Figure 8 Intracardiac pressure-volume loops from the left ventricle in simulation of aortic stenosis
(open area 5.0→ 0.7 cm2, left panel) and aortic regurgitation (closed area 0.0→ 0.2 cm2, right
panel. Stroke volume decreases in aortic stenosis despite high intraventricular pressure. Apparent stroke
volume increases and systemic blood pressure decreases in aortic regurgitation. Left ventricular end-
diastolic pressure and volume increase in both scenarios.
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The combined effect of elastic recoil in large elastic arteries and reflection of pressure

waves in the peripheral vasculature is of importance in coronary physiology as well as

in determining left ventricular afterload. A distributed lumped parameter model as

presented in this article is usually not considered adequate for describing wave trans-

mission and reflection in the vascular tree, although the use of an inductor/inertia in

each vascular compartment and a high resistance in peripheral components create

pressure and flow curves with realistic amplitudes and time delays resembling effects of

reflected waves (Figures 4, 5 and 11). The advantage with our approach is less demand-

ing calculations enabling real-time simulation and also the possibility to connect artifi-

cial circulatory support to any node in the model as will be explored in future works.

Aortic characteristic impedance is originally defined as a single purely resistive com-

ponent describing the properties of the entire vascular tree in the high frequency do-

main, when seen from the aortic valve [20]. Placing this resistor in line with the blood

flow, as is usually done in the 3-compartment Windkessel model, gives adequate results

at high frequencies, but obscures the meaning of the more basic concept "total periph-

eral resistance" in the low frequency domain [19]. When placing the resistor in line

with the capacitor in parallel to the blood flow in each vascular compartment as is done

in the present model (Additional file 14: Figure S2), this component still fulfills the role

of the characteristic impedance in the high-frequency domain without affecting the

total peripheral resistance. This is the reason why the characteristic impedance is calcu-

lated according to Equation 8. Furthermore it has a physical meaning representing the

damping effect imposed by the viscous properties of the vascular wall (non-linear Max-

well viscoelastance model), although the detailed relation to tissue properties remains

to be elucidated.

The algorithms for scaling of the cardiac elastance functions with changing heart rate

seem efficient up to a frequency of 160 min-1. Above this heart rate cardiac output

decreases suggesting either suboptimal diastolic heart function (in the model) or sub-

optimal scaling of the elastance functions. It is also possible that atrioventricular (AV)-



Figure 9 Simulation of Valsalva maneuver (increase in intrathoracic pressure from zero to +10
mmHg between arrows) without (left panel) and with (right panel) baroreceptor reflex activated.
ECG (blue), arterial pressure (red), pulmonary arterial pressure (orange) and central venous pressure (blue),
pressure increase when increasing intrathoracic pressure (yellow arrow), decrease when releasing pressure
(red arrow). The baroreceptor reflex increase heart rate, left ventricular contractility and systemic arterial
resistance. Blood pressure is better maintained and a pressure overshoot is seen after release of
the pressure.
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plane motion, not included in the present model, is necessary to improve ventricular

filling during tachycardia in real life physiology.

Sensitivity analysis in a non-linear model should ideally be performed for every pos-

sible set of input parameters. With many input parameters it is neither feasible to per-

form the calculations nor to interpret them in every possible model state. The choice

of relevant parameters therefore must rely on physical and physiological model rela-

tions; however the relevance of the model is supported by the performed sensitivity

analysis in normal physiology, where parameters determining cardiac filling, afterload

and ventricular systolic performance are most important for cardiac flow and pressure

generation (Additional file 10).
Limitations and future development of the current model

The scientific, clinical and educational value of the model is the possibility to study

combinations of physiological and pathophysiological cardiac and vascular properties as

well as the effects of potential modifications or treatments. This holistic approach en-

ables hypothesis generation regarding the direction of changes and qualitative relations

between parameters in a wide variety of normal and pathological states suggesting pos-

sible usefulness as a clinical decision support tool. Detailed quantitative conclusions are

however not justified without further validating studies. It must also be kept in mind

that differences in the magnitude of changes between model output and patients will

persist due to model simplifications and non-modelled parameters. Patient related pre-

dictions or hypotheses created by any simulation model have to be weighed against

other sources of knowledge such as clinical studies and experience.

The mathematical functions creating the time-varying elastance functions are not

based directly on cellular or mechanical properties of the myocardium, but should ra-

ther be seen as a convenient and well-established way to mimic a realistic physiological

ventricular filling and contraction pattern during variable loading conditions in a com-

puter model. The chosen functions are scalable with changes in cardiac mechanical

properties and heart rate.



Figure 10 (See legend on next page.)
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(See figure on previous page.)
Figure 10 a-e. Pressure volume loops in left (black) and right (gray) ventricle during stepwise
simulation of moderate exercise. (a). Normal resting state. HR 72/min. CO 5.11 l/mint.SAP112/61(79). PAP
24/8(12). (b). Increase in heart rate +100%.HR 144/min. CO 7.08 l/mint.SAP132/86(102). PAP 26/9(14). (c).
Increase in right and left ventricular systolic function +50%. HR 144/min. CO 8.41 l/mint SAP153/95(117).
PAP 29/9(15). (d). Decrease in systemic arterial resistance. Increase in systemic arterioli diameter +50%. HR
144/min. CO 9.23 l/mint.SAP 86/48(60). PAP 30/9(15). (e). Decrease in pulmonary arterial resistance.Increase
in pulmonic arterioli diameter +50%. HR 144/min. CO 10.18 l/mint.SAP 94/50(65). PAP 27/5(13).
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Future improvements of the cardiac model aim at adjustment to known physiological

relations, including the AV-plane movement contributions to the cardiac pumping

mechanism [28] and scaling of the model to neonatal and pediatric size. A specific aim

is also to develop and validate simulated hemodynamic responses in patients treated

with extra-corporeal circulation during intensive care, such as left ventricular unloading

during support with mechanical left ventricular assist devices and systemic oxygen de-

livery and pulmonary hypertension in congenital cardiopulmonary anomalies. Further

development of the model will also aim at implementing a semi-automatic adaptation

to available patient-specific clinical data and from this enable prediction of the

hemodynamic results from possible surgical and pharmacological interventions.

During extreme conditions such as cardiac arrest, extreme hypovolemia or volume

overload, when pressures are outside a normal range an improved model including

simulation of vascular collapse and overdistension needs to be developed. Moreover,

due to the lack of true 3D properties some pathology, e.g. myocardial ischemia and in-

farctions with regional cardiac dysfunction, cannot be represented in detail. The same

problem is inherent in many cardiac arrhythmias involving aberrant activation of the

myocardium.
Figure 11 Blood pressure in ascending aorta with changing vascular stiffness. When increasing
(lighter) Young’s elastic modulus Y systolic pressure increases and diastolic pressure decreases. The
increased stiffness also results in a shorter systolic ejection due to a premature arterial recoil/reflection. The
increase in afterload also results in decreasing left ventricular stroke volume despite increasing stroke work.
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Conclusions
The results of the present publication show that it is possible to build a real-time com-

puter simulation model illustrating the cardiovascular system, including oxygen trans-

port, as evidenced by the base-line values almost entirely within reference limits of

normal physiology and by relevant direction of changes in clinical parameters in a

variety of pathophysiological states. The understanding of complex hemodynamic states

may be further improved when known model parameter changes are studied and sim-

ultaneously compared in detail by the user with clinical data.

Additional files

Additional file 1: Figure S1. Electrical analogue sketch showing both the heart and the vascular system. The
dark yellow area is the pericardium containing the cardiac chambers and coronary vessels. The light yellow area is
the intrathoracic space containing the pericardium, the pulmonary circulation and the thoracic aorta.

Additional file 2: Closed-loop real-time simulation model of hemodynamics and oxygen transport in the
cardiovascular system. Supplement.

Additional file 3: Figure S3. Left (black thick) and right (gray thick) ventricular time-varying elastance functions
during two heart cycles. Atrial elastance functions are shown with thin lines. The amplitude is closely related to
contractile function while the volume-dependent basal level describes passive stiffness.

Additional file 4: Figure S4. The ECG and valvular areas simulated during two normal heart beats. ECG (light
blue) and area-changes during the heart cycle for aortic (red), pulmonary (yellow), mitral (brown), tricuspid (blue)
valves are shown.

Additional file 5: Figure S5. Modeled volume changes (black) due to pressure dependent ventricular septal
volume shift from left to the right ventricle during two heart cycles. Septal stiffness values of 40, 30, 20 and 10
mmHg/ml are shown. Lower septal stiffness increases septal shift. ECG (blue) is shown as reference.

Additional file 6: Figure S6. Simulated pressure gradients over the mitral valve during diastole. The total mitral
pressure gradient (thick black) is decomposed into a dominating Bernoulli gradient (grey) and an inertial
component (dotted black).

Additional file 7: Figure S7. Pericardial pressure-volume relations. The black curve illustrates the relation used in
the present model with the range used by a single heart beat in orange. Pericardial pressure is slightly negative.

Additional file 8: Figure S12. Pressure-volume relations in arterial vascular segments illustrating non-linear
stiffness in the actual working pressure range of each vascular segment in accordance with Equation 10.

Additional file 9: Figure S8. Blood flow in left (black) and right (gray) coronary artery during two heart cycles.
Left coronary artery blood flow decreases during systole due to vascular compression caused by high left
ventricular wall stress.

Additional file 10: Sensitivity analysis.

Additional file 11: Figure S9. Pressure changes simulated during two heart cycles in the aortic root (black),
ascending aorta, proximal and distal aortic arch, descending aorta and a peripheral artery (light gray). The
segments between the aortic root and the peripheral artery are shown in different shades of gray.

Additional file 12: Figure S10. Flow pulsatility in pulmonary capillaries (pink) is larger than in the systemic
capillaries (green). Pulmonary valve flow (orange) and tricuspid valve flow (blue) resembling left-sided flows are
also shown.

Additional file 13: Figure S11. a. Intracardiac pressure-volume loops from the left ventricle (black) and right
ventricle (gray). b. Intracardiac pressure-volume loops from the left atrium (black) and right atrium (gray).

Additional file 14: Figure S2. Electrical analogue sketches showing details of the heart chambers, valves and
vascular compartments. The arrows show directions of blood flow. e(t); time-varying elastance representing systolic
and diastolic chamber properties, Rwall; a resistance representing viscous chamber wall properties, Routflow; a linear
chamber outflow resistance, B; a non-linear Bernoulli valve resistance, Ivalve; an inductance representing flow inertia,,
R; a linear resistance, I; an inductance representing flow inertia, C; a non-linear capacitor representing vascular
elasticity, Ω; a non-linear resistance term representing viscous vascular wall properties.

Abbreviations
L: Blood flow inertance; ρ: Density; l: Valve inflow length; A: Area; Esv: Ventricular septal stiffness; Esv0: Ventricular septal
stiffness constant; elv: Left ventricular systolic elastance; plv: Left ventricular pressure; vlv: Left ventricular volume;
Prv: Right ventricular pressure; Q: Flow; ΔP: Pressure gradient; C: Gorlin empirical constant; R0: Resistance at normal
mean pressure; I0: Inertia at normal mean pressure; E0: Elastance at normal mean pressure; P0: Normal mean pressure;
n: Number of parallel vessels in vascular compartment; η: Blood viscosity; l: Vessel length; r0: Vessel radius at normal
mean pressure; h: Vessel thickness; Yinc: Young’s modulus; Ω: Vascular wall resistance; λ: Vascular wall resistance scaling
factor; E: Elastance; Hb: Hemoglobin; Sat: Oxygen saturation; Volume: Model compartment volume; Emin: Basal cardiac
chamber passive stiffness; LVESP: Left ventricular end-systolic pressure; RVESP: Right ventricular end-systolic pressure;
LAP: Left atrial pressure; RAP: Right atrial pressure; LVSW: Left ventricular stroke work; RVSW: Right ventricular stroke
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work; CO: Cardiac output; S: Sensitivity; y: Output variable; x: Input parameter; BloodVolume: Blood volume;
v_pc0: Pericardial volume constant; Radius_pur: Pulmonary arteriolae radius; Radius_r: Systemic arteriolae radius;
e0_rv: Right ventricular passive diastolic stiffness; emax_rv: Right ventricular systolic contractility; HeartRate: Heart rate;
Alpha2_rv: Duration of right ventricular relaxation; Radius_a: Systemic arterial radius; e0_lv: Left ventricular passive
diastolic stiffness; MeanPressure_v: Normal mean pressure in small systemic veins; Radius_puc: Pulmonary capillary
radius; emax_lv: Left ventricular systolic contractility; Radius_rcardx: Right carotid arterioli radius; Radius_rcarsin: Left
carotid arterioli radius; Radius_pusv: Pulmonary small vein radius; Number_pur: Pulmonary arterioli number;
Length_pur: Pulmonary arterioli length; Length_r: Systemic arterioli length; lambda_rv: Right ventricular stiffness
constant; Number_r: Systemic arterioli number; AV: Atrio-ventricular; dp/dtmax: Maximum pressure derivative; dp/
dtmin: Minimum pressure derivative; Tau: Ventricular relaxation constant Tau; EDV: Left ventricular end-diastolic volume;
LA volume: Left atrial volume; Tei: Tei index = Myocardial performance index; Ees/Ea: Ventricular-vascular coupling; RA
volume min -– max: Right atrial volume; HR: Heart rate; SAP: Systolic arterial pressure; LVEF: Left ventricular ejection
fraction; LVSV: Left ventricular stroke volume; LVEDV: Left ventricular end-diastolic volume; ECG: Electrocardiogram;
PAP: Pulmonary arterial pressure.

Competing interests
Michael Broomé is the founder and owner of the company Aplysia Medical AB developing the simulation software
Aplysia CorVascSim. There are no other conflicts of interest.

Authors’ contributions
MB constructed the model, performed programming, sensitivity analysis and drafted the manuscript. EM and AB
participated in model construction and adaptation of the model to engineering standards as well as in manuscript
drafting. BJS participated in model development in relation to previously published models and drafting of the
manuscript. MB, BF and BJS all participated in evaluation of the clinical relevance of the model as being clinically
active medical doctors. All authors read and approved the final manuscript.

Acknowledgments
MBs research during the years 2013–2015 is founded by The Swedish Research Council Grant 2012–2800. BJS have a
strategic professor position in Medical Technology at Karolinska Institutet.

Author details
1ECMO Department, Karolinska University Hospital, SE-171 76, Stockholm, Sweden. 2Anesthesiology and Intensive Care,
Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. 3School of Technology and
Health, KTH Royal Institute of Technology, Stockholm, Sweden. 4Department of Molecular Medicine and Surgery,
Karolinska Institutet, Stockholm, Sweden. 5Department of Pediatric Surgery, Karolinska University Hospital, Stockholm,
Sweden. 6Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
7Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden.

Received: 18 March 2013 Accepted: 19 June 2013
Published: 10 July 2013

References

1. Okuda Y, Bryson EO, DeMaria S, Jacobson L, Quinones J, Shen B, Levine AI: The utility of simulation in medical

education: what is the evidence? Mt Sinai J Med 2009, 76(4):330–43.
2. Hunter PJ, Pullan AJ, Smaill BH: Modeling total heart function. Annu Rev Biomed Eng 2003, 5:147–77.
3. Shim EB, Jun HM, Leem CH, Matusuoka S, Noma A: A new integrated method for analyzing heart mechanics

using a cell-hemodynamics-autonomic nerve control coupled model of the cardiovascular system.
Prog Biophys Mol Biol 2008, 96(1–3):44–59.

4. Paeme S, Moorhead KT, Chase JG, Lambermont B, Kolh P, D'orio V, Pierard L, Moonen M, Lancellotti P, Dauby PC,
Desaive T: Mathematical multi-scale model of the cardiovascular system including mitral valve dynamics.
Application to ischemic mitral insufficiency. Biomed Eng Online 2011, 10:86.

5. Arts T, Delhaas T, Bovendeerd P, Verbeek X, Prinzen FW: Adaptation to mechanical load determines shape and
properties of heart and circulation: the CircAdapt model. Am J Physiol Heart Circ Physiol 2005, 288(4):H1943–54.

6. Chase JG, Starfinger C, Hann CE, Revie JA, Stevenson D, Shaw GM, Desaive T: Model-based prediction of the
patient-specific response to adrenaline. Open Med Inform J 2010, 4:149–63.

7. Starfinger C, Chase JG, Hann CE, Shaw GM, Lambert P, Smith BW, Sloth E, Larsson A, Andreassen S, Rees S: Model-
based identification of PEEP titrations during different volemic levels. Comput Methods Programs Biomed 2008,
91(2):135–44.

8. Sun Y, Sjöberg BJ, Ask P, Loyd D, Wranne B: Mathematical model that characterizes transmitral and pulmonary
venous flow velocity patterns. Am J Physiol 1995, 268(1 PT 2):H476–89.

9. Sun Y, Beshara M, Lucariello RJ, Chiaramida SA: A comprehensive model for right-left heart interaction under
the influence of pericardium and baroreflex. Am J Physiol 1997, 272(3 PT 2):H1499–515.

10. Chung DC, Niranjan SC, Clark JW, Bidani A, Johnston WE, Zwischenberger JB, Traber DL: A dynamic model of
ventricular interaction and pericardial influence. Am J Physiol 1997, 272(6 PT 2):H2942–62.

11. Mynard JP, Davidson MR, Penny DJ, Smolich JJ: A simple versatile model of valve dynamics for use in lumped
parameter and one-dimensional cardiovascular models. International Journal for Numerical Methods in
Biomedical Engineering 2011, 28(6–7):626–41.

12. Wang JJ, Parker KH: Wave propagation in a model of the arterial circulation. J Biomech 2004, 37(4):457–70.
13. Milnor WR: Hemodynamics. 2nd edition. Baltimore: William and Wilkins; 1989.
14. Stergiopulos N, Meister JJ, Westerhof N: Determinants of stroke volume and systolic and diastolic aortic

pressure. Am J Physiol 1996, 270(6 PT 2):H2050–9.



Broomé et al. BioMedical Engineering OnLine 2013, 12:69 Page 20 of 20
http://www.biomedical-engineering-online.com/content/12/1/69
15. Maughan WL, Sunagawa K, Sagawa K: Ventricular systolic interdependence: volume elastance model in
isolated canine hearts. Am J Physiol 1987, 253(6 PT 2):H1381–90.

16. Applegate RJ, Santamore WP, Klopfenstein HS, Little WC: External pressure of undisturbed left ventricle.
Am J Physiol 1990, 258(4 PT 2):H1079–86.

17. Gorlin R, Gorlin SG: Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac
valves, and central circulatory shunts. Am Heart J 1951, 41(1):1–29.

18. Westerhof N, Stergiopulos N, Noble M: Snapshots of Hemodynamics. An aid for clinical research and graduate
education. Boston: Springer; 2005.

19. Arts T, Reesink K, Kroon W, Delhaas T: Simulation of adaptation of blood vessel geometry to flow and pressure:
Implications for arterio-venous impedance. Mech Res Commun 2012, 42:15–21.

20. Murgo JP, Westerhof N, Giolma JP, Altobelli SA: Aortic input impedance in normal man: relationship to
pressure wave forms. Circulation 1980, 62(1):105–16.

21. Lee JJ, Tyml K, Menkis AH, Novick RJ, Mckenzie FN: Evaluation of pulsatile and nonpulsatile flow in capillaries of
goat skeletal muscle using intravital microscopy. Microvasc Res 1994, 48(3):316–27.

22. Suga H: Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol 1979,
236(3):H498–505.

23. Hufner G: Neue versuche zur bestimmung der sauerstoffcapacitat der blutyfarbstoffs. Arch Physiol 1902,
17(22):130–76.

24. Butcher JC: Chapter 23: Runge–Kutta Methods, Numerical methods for ordinary differential equations. Chichester,
UK: John Wiley & Sons; 2003:93–104.

25. Lentner C: Volume 5: Heart and Circulation.8th revised and enlarged edition, Geigy Scientific Table. 5th edition. West
Caldwell, New Jersey: CIBA-GEIGY; 1990.

26. Dernellis JM, Stefanadis CI, Zacharoulis AA, Toutouzas PK: Left atrial mechanical adaptation to long-standing
hemodynamic loads based on pressure-volume relations. Am J Cardiol 1998, 81(9):1138–43.

27. Harrigan PWJ, Pinsky MR: Heart-lung interactions. Part II: effects of intrathoracic pressure. Intensive Care 2001,
Part II:99–106. Summer.

28. Lundbäck S: Cardiac pumping and function of the ventricular septum. Acta Physiol Scand Suppl 1986, 550:1–101.
doi:10.1186/1475-925X-12-69
Cite this article as: Broomé et al.: Closed-loop real-time simulation model of hemodynamics and oxygen
transport in the cardiovascular system. BioMedical Engineering OnLine 2013 12:69.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	General overview of the model
	Cardiac model
	The heart chambers
	The heart valves
	The atrial and ventricular septum
	The pericardium
	Intracardiac and arteriovenous shunts

	Vascular model
	The systemic circulation
	The pulmonary circulation
	The coronary circulation

	Oxygen transport
	Baroreceptor reflex
	Simulation
	Parameter settings in simulations of normal physiology, systolic heart failure, diastolic heart failure, aortic stenosis, aortic regurgitation, a Valsalva maneuver, exercise and progressive arteriosclerosis
	Sensitivity analysis

	Results
	Normal physiology
	Systolic heart failure
	Diastolic heart failure
	Aortic stenosis
	Aortic regurgitation
	Valsalva
	Exercise
	Arteriosclerosis
	Sensitivity analysis

	Discussion
	Limitations and future development of the current model

	Conclusions
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

