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Abstract

Since falls are a major public health problem among older people, the number of
systems aimed at detecting them has increased dramatically over recent years. This
work presents an extensive literature review of fall detection systems, including
comparisons among various kinds of studies. It aims to serve as a reference for both
clinicians and biomedical engineers planning or conducting field investigations.
Challenges, issues and trends in fall detection have been identified after the reviewing
work. The number of studies using context-aware techniques is still increasing but
there is a new trend towards the integration of fall detection into smartphones as well
as the use of machine learning methods in the detection algorithm. We have also
identified challenges regarding performance under real-life conditions, usability, and
user acceptance as well as issues related to power consumption, real-time operations,
sensing limitations, privacy and record of real-life falls.
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Introduction
According to the World Health Organization [1] approximately 28-35% of people aged

65 and over fall each year increasing to 32-42% for those over 70 years of age. The fre-

quency of falls increases with age and frailty level. In fact, falls exponentially increase

with age-related biological changes, which is leading to a high incidence of falls and fall

related injuries in the ageing societies. If preventive measures are not taken in the im-

mediate future, the number of injuries caused by falls is projected to be a 100% higher

in 2030. In this context, assistive devices that could help to alleviate this major health

problem are a social necessity. Indeed, fall detectors are being actively investigated.

A fall detection system can be defined as an assistive device whose main objective is

to alert when a fall event has occurred. In a real-life scenario, they have the potential

to mitigate some of the adverse consequences of a fall. Specifically, fall detectors can

have a direct impact on the reduction in the fear of falling and the rapid provision of

assistance after a fall. In fact, falls and fear of falling depend on each other: an individual

who falls may subsequently develop fear of falling and, viceversa, the fear of falling may

increase the risk of suffering from a fall [2]. Fear of falling has been shown to be associ-

ated with negative consequences such as avoidance of activities, less physical activity, fall-

ing, depression, decreased social contact and lower quality of life [3]. The effect of

automatic fall detection units on the fear of falling has been studied by Brownsel et al.

[4]. They conducted a study with community alarm users who had experienced a fall in
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the previous six months. At the end of the study, those who wore the fall detector appro-

priately reported that they felt more confident and independent, and considered that the

detector improved their safety. One of the conclusions of the study was that the fear of

falling is likely to be substantially affected by user perception of the reliability and accur-

acy of the fall detector.

The other important aspect that fall detectors may help to reduce is the time the elderly

remain lying on the floor after falling (long lie). This time is one of the key factors that

determine the severity of a fall. Many older fallers are unable to get up again without

assistance and any subsequent long lie can lead to hypothermia, dehydration, broncho-

pneumonia and pressure sores [5,6]. This is particularly critical if the person lives

alone or loses consciousness after falling. Lord et al. [7] reviewed different studies on

the long lie. They found that the long lie is a marker of weakness, illness and social iso-

lation and is associated with high mortality rates among the elderly. More than 20% of

patients admitted to hospital because of a fall had been on the ground for an hour or

more, and even if there was no direct injury from the fall, their morbidity rates within

6 months were very high. Robust fall detectors may have the potential to diminish this

long lie. A robust fall detector is one that is able to classify the falls as falls and the

non-falls as non-falls even under real life conditions. If a fall event occurs and the sys-

tem does not detect it, the consequences can be dramatic: the person can remain lying

on the floor for a long time with all that this implies. In addition, the loss of confidence

in the system may eliminate the benefits of the detector on the fear of falling. By con-

trast, if the system reports an excessive number of false activations, caregivers may

perceive it as ineffective and useless, which may lead to device rejection. But robust-

ness is not easy to achieve. Although several commercial products are available on the

market, the fact is that they are not widely used and do not have a real impact on the

elders’ lives yet [8,9]. Besides, the vast majority of their potential users do not know of

their existence. However, when the concept of fall detection is presented, they find in

it a great potential to improve their security and safety in home.

For these and many more reasons, the number of studies on fall detection has in-

creased dramatically over recent years. Unfortunately, there are not many reviews on

fall detection. The work of Noury et al. [10], which appeared in 2008, can be considered

the first one in this field. Shortly thereafter, Perry et al. [11] published a similar analysis.

These studies provided a general overview of the fall detection status, but it has

changed greatly since they were published, and the current fall detection trends have

little in common with those of previous years. Mubashir et al. [12] is more recent, but

it includes only 2 papers from 2011 and lacks later papers anyway, for instance many

smartphone-based detectors. In our study, we do not present a detailed discussion of

each paper, like [12], but rather we show the information schematically by means of

tables including relevant information for people conducting research in this field: the

types of falls used in the simulations, the number of users involved in the tests,

whether they include data from older people, detectors’ performance, methods and

features used for classification, etc. In addition we have performed a longitudinal

study to identify the current trends. We have also included our view of the challenges

that fall detection faces and we have highlighted the critical issues that can comprom-

ise its use in real-world scenarios. We hope that our work will serve as a reference for

both clinicians and biomedical engineers planning or conducting field investigations.
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The study has been carried out through the analysis of several journal articles and

conference proceedings. A search of IEEE Xplore, PubMed, MEDLINE, Google Scholar,

and Web of Knowledge has been conducted. The search strategy included either “fall

detection”, “fall detector”, “detection of falls”, “automatic fall detection”, “fall detection

mobile phones”, “fall detection accelerometers”, “fall detection context” or “fall events”

as the keywords. References were searched by hand and further relevant papers identi-

fied from their citations. A total of 327 studies on fall detection were found, which were

then categorized into different groups (see section Classification of fall detection systems).

Some of them were selected for a further analysis that is presented in this paper. The

selection criteria were:

– Firstly, we considered the most cited study per year in each category, from 2005 to

2012, according to the ranking provided by the Web of Knowledge.

– Secondly, among the remaining studies, we made a personal selection in order to

obtain those works that may help to identify the challenges, issues and trends in fall

detection as well as to provide a comprehensive vision of the different detection

techniques and the current status of this field. Only studies including some

experimental results or pioneering investigations have been considered.

The rest of this paper is organized as follows: firstly, a classification of fall detection

systems is presented, distinguishing between context-aware systems and wearable devices;

secondly, we discuss the challenges, issues and trends in fall detection.
Classification of fall detection systems

The literature reviewed provides evidence of the lack of a common approach. Noury et al.

[10] classify the different studies on fall detection according to whether they only focus on

the detection of the impact shock, or they also include the detection of the postfall phase.

By contrast, Mubashir et al. [12] divide fall detectors into three categories: wearable device

based, ambience sensor based and camera (vision) based. Perry et al. [11] group them into

three categories: methods that measure acceleration, methods that measure acceleration

combined with other methods, and methods that do not measure acceleration.

Essentially, the structure of all fall detection systems is always similar. Their main

objective is to discriminate between fall events and activities of daily living (ADL). This

is not an easy task as certain ADL, like sitting down or going from standing position to

lying down, have strong similarities to falls. Thus, in order to test a fall detector, it is

necessary to collect data from falls and ADL, which can be real (very difficult, especially

for falls) or simulated by young volunteers (a feasible option adopted by most authors).

These data are recorded by sensors and can be in form of acceleration signals, images,

pressure signals, etc. Then, they are processed and classified using a fall detection tech-

nique capable of distinguishing between falls and ADL. In most cases, the performance of

the detector is expressed in terms of sensitivity (SE) and specificity (SP). The sensitivity is

the ability of a detector to correctly classify a fall as a fall, while the specificity is the ability

of a detector to correctly classify an ADL as ADL [13].

After reviewing the literature, we conclude that fall detectors can be broadly categorized

into two types: context-aware systems and wearable devices. The first category includes
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151 studies, while 197 papers belong to the second one. Twenty-one studies have been

included in both categories since they use a combination of techniques. Next sections

investigate some of the most relevant studies in both groups.
Context-aware systems

These systems use sensors deployed in the environment to detect falls. Their main advan-

tage is that the person does not need to wear any special device. However, their operation

is limited to those places where the sensors have been previously deployed [14].

Among all the possible types of sensors, the most common are cameras, floor sensors,

infrared sensors, microphones and pressure sensors. Video-based systems can be consid-

ered as a subcategory in this group as they use computer vision techniques that differ

from the rest of the detection methods. Table 1 compares some of the most significant

works in this area. For the comparison, we suggest a set of 9 items: the year of their publi-

cation, a brief description of the fall detection technique, the features extracted to perform

the fall detection, the fall types considered in the study, the subjects involved in the testing

phase, the type of sensor used and whether they include data from older people or not.

There is a high variability in detection techniques as they are dependent on the type

of sensor used. All methods start with a feature extraction, for example, the ratio of

people’s height and weight [15], the edge points from the silhouette of a person [14],

changes in illumination [16], the orientation of the main axis of the person [17], the

width, height and depth of the human posture [18], the skin colour to detect people

[19], etc. Then these features are compared and classified to distinguish normal activities

from real falls using different techniques (Table 2). At present, lots of different features

have been examined and none of them prevails over the rest since they give similar results

and no comparison has been done.

The number of subjects involved in the tests is still low if compared to acceleration-

based studies (next section). In addition, common to all of these works is the absence

of older people during the test period.

Although most of the studies report relatively high accuracies, the experimental findings

may not be generalized since there are significant limitations in the test dataset. For

example, video-based systems only consider one or two specific sequences in con-

trolled environments [14,15,17,19-24] and other studies with different types of sensors

(pressure [25], infrared [18], etc.) only use a few tens of data collected from some

young volunteers. Longer real-world tests could probably lead to more realistic results.

Privacy concerns in context aware systems are not minor problems. Methods to protect

privacy are dependent on the type of sensor used. In the extreme case of video-based

technology, some authors have opted to obscure or distort the person’s appearance in the

video to ensure privacy [26]. Although privacy should already be considered in the design

stage [27], not all the studies have followed this approach, which is a clear sign that some

context aware systems are mainly focused on the technological development rather than

on a real-world deployment.

If we focus on the fall detection techniques used in the different studies, a variety of ap-

proaches can be found. Table 2 summarizes the contributions of the different authors.

In general, the structure of all methods is very similar. Most of them start with an object

detection that can be performed through a background subtraction in the video-based



Table 1 Comparison of context-aware systems

Article Year Basis Features used for fall detection Fall types Subjects Declared
performance

Type of
sensor

Elders
Yes/No

Comments

Lee et al. [20] 2005 Vision-based method
for monitoring falls
at home

State and geometrical orientation
of the silhouette at time t, spatial
orientation and speed of the centre
of the silhouette

Fall lying down
in a ‘stretched’
position and fall
lying down in a
‘tucked’ position

21 subjects
(age 20–40)

SP: 80.5% Camera No Personalized thresholds
are established based
on the height of the
subjects

SE: 93.9%

Miaou et al. [15] 2006 Customized fall detection
system using omni-
camera
images

The ratio of people’s height
and weight

Not specified 20 subjects With personal
information:
SP: 86% SE: 90%

Camera No Determining a proper
threshold statistically
for different ranges of
height or weight alone
does not improve the
system performance

Vishwakarma et al. [21] 2007 Automatic detection of
human fall in video

Aspect ratio, horizontal and vertical
gradient distribution of object in XY
plane and fall angle

Sideways,
forward,
backward falls

1 subject SP: 100% SE: 100% Camera No Both indoor and
outdoor video
containing different
types of possible falls
are taken

Cucchiara et al. [19] 2007 A multi-camera vision
system for detecting and
tracking people and
recognizing dangerous
behaviours

Geometrical and colour features
together with the projection of the
silhouette’s shape on the x and y axes.

Not specified Not specified Difficulties with
occlusions are
reported

Camera No If a fall is suspected it
delivers live video
streams to clinicians in
order to check the
validity of a received
alarm

Fu et al. [16] 2008 Contrast vision system
designed to detect
accidental falls

Change in illumination Backward,
forward and
sideways falls

3 subjects 3 possible
scenarios
evaluated with
positive results

Contrast
vision sensor

No Instantaneous motion
vectors are computed
and fall hazards are
immediately reported
with low
computational effort

Hazelhoff et al. [17] 2008 Real-time vision system to
detect fall incidents in
unobserved home
situations

The orientation of the main axis
of the person and the ratio of the
variances in horizontal and vertical
direction Skin colour

Not specified At least 2
subjects

SE: 100% when
large occlusions
are absent

Camera No The position of the
head is taken into
account in order to
obtain a high
robustness
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Table 1 Comparison of context-aware systems (Continued)

Anderson et al. [22] 2009 3D representation of
humans (voxels) using
multiple cameras. Two
levels of fuzzy logic
determines first a state
and then activities
(f.i. a fall)

At low level: silhouettes from each
camera, to build a set of voxels. At
an intermediate level: centroid, height,
major orientation of the body and
similarity of the major orientation with
the ground plane normal.

At least, falls
forward,
backwards, and
to the side (with
recovery,
attempting to
get back up,
lying
motionless)

Not specified SE: 100% Camera No The system can
produce sentences
like “the person is on-
the-ground in the
kitchen for a
moderate amount of
time”

SP: 93.75%

Lie et al. [23] 2010 Vision fall detection
system considering
privacy issues

The ratio and difference of human
body silhouette bounding box height
and width

Not specified 15 subjects
(age 24–60)

Accuracy 84.44% Camera No Activities are divided
into three categories:
standing posture,
temporary posture
and lying down
posture

Rimminen et al. [28] 2010 Fall-detection method
using a floor sensor
based on near-field
imaging

Features related to the near-field
imaging floor (the number of
observations, the sum of magnitudes
and dimensional features)

Backward to sit,
backward to
lateral, to supine,
onto knees, arm
protect, to
prone, rotate
right and left,
right and left
lateral

10 subjects SE: 91% Near-field
image
sensor

No The fall-detection
performance is valid
for multiple people in
the same room

SP: 91%

Tzeng et al. [25] 2010 A system that adjusts the
detection sensitivity on a
case-by-case basis to
reduce unnecessary
alarms

Floor pressure signal Backward,
forward and
sideways falls

Not specified SP: 96.7% Pressure/
infrared
sensors

No The floor pressure
sensor is combined
with the infrared
sensor

Image features: standard deviation
of vertical projection histogram,
standard deviation of horizontal
projection histogram, and aspect ratio

SE: 100%

Diraco et al. [24] 2010 An active vision system
for the detection of falls
and the recognition of
postures for elderly
homecare applications.

People’s silhouette and their
centre-of-mass

Backward falls,
forward falls,
lateral falls

Not specified SE: 80% Camera No Information about the
3D position of the
subject is combined
with the detection of
inactivity.

SP: 97.3%
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Table 1 Comparison of context-aware systems (Continued)

An approach for
posture recognition is
proposed

Rougier et al. [14] 2011 A vision system based on
analyzing human shape
deformation

Some edge points from the
silhouette of the person

Forward falls,
backward falls,
falls when
inappropriately
sitting down,
loss of balance

Not specified Accuracy (falls and
ADL correctly
classified): 98%

Camera No The fall impact is an
important feature to
detect a fall, but the
lack of movement
after the fall is crucial
for robustness

Li et al. [29] 2012 Acoustic fall detection
system

Acoustic signals sampled
at 20 KHz

Backward,
forward and
sideways falls
(balance, lose
consciousness,
trip, slip, reach
chair, couch)

3 subjects
(2 female, 1 male,
ages 30, 32, 46)

SE: 100% Array of
microphones

No The source of the
sound is located.

SP: 97%
The performance of
the acoustic detector
is evaluated using
simulated fall and
nonfall sounds

Mastorakis et al. [18] 2012 Real-time fall detection
system based on the
Kinect sensor

The width, height and depth
of the human posture, which
define a 3D bounding box

Backward,
forward and
sideways falls

8 subjects All falls were
accurately
detected

Infrared
sensor

No The system requires
no pre-knowledge of
the scene and three
parameters to
operate; the width,
height and depth of
the subject

Zhang et al. [27] 2012 Privacy Preserving
Automatic Fall Detection

Deformation and person’s height Fall from chair,
fall from
standing

5 subjects Accuracy 94% RGBD
cameras

No The system can
handle special cases
such as light turning
off (insufficient
illumination)
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Table 2 Fall detection techniques in the context-aware studies

Fall detection method

1st step 2nd step 3rd step 4th step 5th step

Lee et al. [20] Adaptive background
subtraction to detect the
object of interest

Image processing using
a connective-component
labelling technique, with
the end product being a
‘blob’ or silhouette

Feature extraction Determination of the threshold
values for each of the features
based on the height of the users

Miaou et al. [15] Background subtraction
to detect the objects.

Image processing: erosion
and dilatation, connected
component labelling
technique

Feature extraction
(height and width of
object’s silhouettes)

Simple threshold-based decision
algorithm for fall detection

Vishwakarma et al. [21] Patient detection
(adaptive background
subtraction method using
Gaussian mixture model)

Feature extraction Fall detection using aspect
ratio and pixel's gradient
distribution and applying
rule-based decisions

Fall confirmation using the fall
angle and applying rule-based
decisions

Cucchiara et al. [19] Extraction of moving objects
using background suppression
with selective and adaptive
update

Tracking algorithm:
A probabilistic and
appearance-based tracking

Classification as people
of tracks that satisfy some
geometrical and colour
constraints

Posture classifier based on the
projection histograms computed
over the temporal probabilistic
maps obtained by the tracker

Hidden Markov Models formulation
is adopted to classify the posture

Fu et al. [16] Extraction of changing pixels
(motion events) from the
background

A lightweight algorithm
computes the instantaneous
motion vectors

Fall events are reported
using the temporal average
of the motion events

Hazelhoff et al. [17] Object segmentation:
(background subtraction and
connection of information
components)

Object tracking: the tracker
can mark objects as non-human,
which are identified based on
size and absence of both motion
and a head region

PCA-based feature extraction:
the direction of the principal
component and the variance
ratio are extracted

Fall detection: using a multi-frame
Gaussian classifier

Head tracking using skin-colour
model to confirm the fall

Anderson et al. [22] Silhouette extraction from
each camera. Then, a 3D
representation of the body
is constructed

Extraction of centroid, height,
major orientation of the body
and similarity of the major
orientation with the ground
plane normal

Human state inferred using
fuzzy logic (3 states: upright,
on-the-ground and in-between)

Information in sequences of states
is reduced by linguistic summarization
to produce human readable sentences

Fall detected by a second level
of fuzzy logic, taking inputs from
a single summary: average state,
time duration, speed, oscillation, etc.
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Table 2 Fall detection techniques in the context-aware studies (Continued)

Lie et al. [23] Human body identification
using frame differencing approach

Image processing: mean filter
to make the image more smooth,
thresholding to obtain a binary
image, connected component
labelling

Features extraction and
reduction of upper limb
activities effect

k-nearest neighbour classifier for
human body postures classification

Fall event detection flow:
the decision of a fall incident
is determined by the event
transition and time difference
between events

Rimminen et al. [28] Estimate the position of the
subject using the near-field
image sensor observations

Tracking (Kalman filter) and
multi-target tracking (Rao-
Blackwellized Monte Carlo data
association algorithm)

Features extraction related
to the NFI floor

Modelling of the state evolution
as a two-state Markov chain
(falling, getting up)

Pose estimation using Bayesian
filtering. It combines the prior
model with information from
the features

Tzeng et al. [25] Fall suspection: Thresholding
of the floor pressure signal

If the floor preassure exceeds a
given threshold: Image capture

Background subtraction
through an image thresholding.
Objects labelling and expansion
(morphological operations)

Image features extraction Combination of the floor
pressure signal and image
features to report on a fall

Diraco et al. [24] Camera calibration Background modelling using
Mixture of Gaussians method

Moving regions detection
(Bayesian segmentation) and
segmented blobs refining
(morphological operations and
connected components)

Fall suspection: The distance
of the centroid from the floor
plane is lower than a prefixed value

Fall confirmation if an
unchangeable situation persists
for at least 4 seconds

Rougier et al. [14] Silhouette detection
(foreground segmentation
method) and edge points
extraction (Canny edge
detector)

Silhouette edge points
matching through the video
sequence

Shape analysis using the mean
matching cost and the full
Procrustes distance

Fall classification: Gaussian mixture
model, based on shape deformation
during the fall and the subsequent
lack of movement

Li et al. [29] Locate the position of the
sound source

Beamforming to enhance the
sound signal using the
estimated source position

Mel-frequency cepstral
coefficients features are
extracted from the sound signal

A nearest neighbour classifier
determines if the sound is from
a fall

Mastorakis et al. [18] Feature extraction: width,
height and depth of the
human posture

Obtaining of the velocities of
height and the composite
vector of width and depth

When both velocities exceed
particular thresholds fall
initiation is detected

Inactivity detection: a fall is detected
if the height velocity is less than a
certain threshold

Zhang et al. [27] Kinematic Model Based
Feature Extraction from
Depth Channel

Person tracking by background
subtraction

Histogram represented
features

Hierarchy Support Vector Machine
classification
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systems [14,15,17,19-23], or from the information provided by the sensors’ observation

[28,29]. Some methods also consider a tracking algorithm to filter objects’ position

[17,19,27,28]. Then, some features of the detected objects are extracted (Table 1), which

should have sufficient discriminative power to identify the fall events. They are used to

classify the events as falls or non-falls using a wide range of techniques: Gaussian Mixture

Model [14], Rule-based Techniques [21], Multi-frame Gaussian Classifier [17], Bayesian

Filtering [28], Nearest-neighbour Rule [23,29], Hidden Markov Models [19], Thresholding

Techniques [15,20,25], Fuzzy Logic [22], etc. Some studies confirm that a fall has occurred

by performing inactivity detection in the postfall phase [14,18,24].

As a result of this extensive literature search, we found that lots of strategies have

been adopted, although currently there is no standardized context-aware technique that

was widely accepted by the research community in this field.
Wearable devices

They can be defined as miniature electronic sensor-based devices that are worn by the

bearer under, with or on top of clothing [30]. The vast majority of wearable fall detectors

are in the form of accelerometer devices (186 out of 197). Some of them also incorporate

other sensors such as gyroscopes to obtain information about the patient’s position. The

use of applications based on accelerometers and gyroscopes in gait and balance evalu-

ation, fall risk assessment and mobility monitoring has been actively explored [31]. This

trend has increased over the last years due to the availability of cheap embedded sensors

included in smartphones. In this paper, we classify the different studies using wearable de-

vices according to whether or not sensors are built into smartphones, 30 and 156 papers

respectively. The next two sections provide more details about these subgroups.

Accelerometer attached to the body

Acceleration data are collected during falls using independent tri-axial accelerometers

attached to different parts of the body. A review of several research studies was conducted.

For the purpose of comparison, Table 3 examines the most relevant works. The fields are

the same as in section Context-aware systems, including a new item with the accelerometer

placement on the body. Since Table 3 is only focused on acceleration-based systems, the

possible techniques for fall detection are reduced to just two: i) threshold-based methods,

TBM, in which a fall is reported when the acceleration peaks, valleys or other shape features

reach predefined thresholds; ii) machine learning methods, MLM [32]. The aim is to

visualize progress in research over the last years.

Most of the existing works use thresholding techniques for automatic fall detection

[9,33-41], although the machine learning approach has increased its influence since

2010 [42-44]. The methods applied include Support Vector Machine [42,44-46], Regrouping

Particle Swarm Optimization, Gaussian Distribution of Clustered Knowledge [43], Multi-

layer Perceptron, Naive Bayes, Decision tree [44,47], ZeroR and OneR [44]. The multilayer

perceptron seems to be a good supervised option according to Kerdegari et al. [44], although

there is no standardized technique that is widely accepted by the scientific community.

The average number of subjects involved in the tests is about 17, which is signifi-

cantly higher than in context-aware systems (previous section). This indicates a

higher reliability of this technology but still insufficient; only 6 of the works involve

older people in the ADL study [9,33,35,37,40,45], while the rest use simulated data



Table 3 Comparison of acceleration based fall detectors using external accelerometers

Article Year Basis Detection technique Fall types Subjects Declared
perform

Position Elders
Yes/No

Comments

Lindeman et al. [33] 2005 A fall detector
placed at head

level

TBM considering the spatial
direction of the head, the

velocity right before the initial
contact with the ground and the

impact

Falls to the front, side
with a 90° turn, back,
back with hip flexion.

A young volunt
and an elderly wo n

(83 years)

High
sensitivity

and
specificity

Ear Yes Accelerometers were
integrated into a hearing-aid
housing, which was fixed

behind the ear
Falls backwards against
a wall, while picking up
an object and collapse.

Chen et al. [34] 2005 Detect the
occurrence of a
fall and the

location of the
victim

TBM considering the impact and
the change in orientation

Backward and sideways
falls

2 subjects The
acceleration
for ADL is
much less
than the
observed
from falling

Waist No The final orientation of the
wearer is considered

Zhang et al. [45] 2006 Fall detection
using machine

learning
strategies

MLM. 1) Extraction of temporal
and magnitude features from the
acceleration signal, 2) One-class
Support Vector Machine classifier

Soft fall 12 subjects (8 m ,
4 females, ages 1 0)

Accuracy
96,7%

Waist Yes To the best of our
knowledge, this study is the

first in using machine
learning techniques

Hard fall in the ground,
stairs and slopes (using

a mannequin)

Bourke et al. [35] 2007 Investigation into
the ability to
discriminate

between falls and
ADL

TBM using information from the
impact

Forward falls, backward
falls and lateral falls left
and right, performed
with legs straight and

flexed

10 subjects
(ages 21–29

Trunk Trunk,
thigh

Yes The trunk appears to be the
optimum location for a fall

sensorSP:100%

10 community-dw ng
elderly subjects (3 f les,

7 males, ages 70 )

Thigh

SP: 83.3%

Doukas et al. [46] 2007 Accelerometers
transmit patient
movement data
wirelessly to the
monitoring unit

MLM. The acceleration in the
three axis is classified using
Support Vector Machine

Not specified 1 subject SE: 98.2% Foot No If a fall is suspected it also
transmits video images to
remote monitoring unitsSP: 96.7%
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Table 3 Comparison of acceleration based fall detectors using external accelerometers (Continued)

Kangas et al. [36] 2008 Comparison of 3
low-complexity
algorithms

TBM considering the start of the
fall, the velocity, the impact and

the lying posture

Forward, backward, and
lateral falls

3 volunteers (1 fem e,
2 males; ages 38, 42 8)

Waist Wrist,
head,
waist

No Waist worn accelerometer
might be optimal for fall

detection considering the fall
associated impact and the

posture after the fall

SP: 100%

SE: 98%

Kangas et al. [37] 2009 To validate the
data collection
of a new fall
detector
prototype

TBM considering two or more of
the following phases of a fall
event: start of the fall, falling

velocity, fall impact, and posture
after the fall

Syncope, tripping,
sitting on empty air,
slipping, lateral fall,
rolling out of bed

20 subjects
(40–65 years old
21 voluntary old

people (58–98 years ld)

SP: 100% Waist Yes Middle-aged persons could
be considered to mimic the
fall events of older people

more adequately than young
subjects would

SE: 97.5%

Li et al. [38] 2009 Fall detection
system using

both
accelerometers
and gyroscopes

TBM analyzing the intensity of
the activity, the posture and

whether the transition to a lying
posture was unintentional or not

Forward, backward,
sideways and vertical
falls. Falling on stairs
and fall against walls
ending with a sitting

position

3 male subject
(age 20)

SP: 92% Chest,
thigh

No Human activities are divided
into static postures and
dynamic transitionsSE: 91%

Shan et al. [42] 2010 Investigation of a
pre-impact fall

detector

MLM 1) A discriminant analysis is
applied to time-domain statistical

characteristics to select the
features, 2) Support Vector
Machine is used for fall

recognition

Forward falls, backward
falls, lateral falls left and
right (subjects were

instructed to keep their
postures for about

2 seconds after the fall)

5 male subject
(ages 21 – 28)

SP: 100% Waist No Impending falls are detected
in their descending phase
before the body hits the

ground

SE: 100%

Bianchi et al. [39] 2010 Augmentation of
accelerometer-
based systems

with a barometric
pressure sensor

TBM considering the impact, the
postural orientation, and the
change in altitude associated

with a fall

Forward, backward and
lateral falls (ending lying,

with recovery, with
attempt to break the

fall)

20 subjects (12 m ,
8 female; mean age 3.7)

SP: 96.5% Waist No A system based on a
barometric pressure sensor is

compared with an
accelerometry-based

technique. The acceleration
and air pressure data are
recorded using a wearable

device

SE: 97.5%
5 subjects (2 ma

3 female; mean age 4)

Resting against a wall,
then sliding vertically

down to the end in the
sitting position

5 subjects (5 ma ,
mean age: 26.4
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Table 3 Comparison of acceleration based fall detectors using external accelerometers (Continued)

Bourke et al. [40] 2010 It compares
novel fall-
detection

algorithms of
varying

complexity

TBM considering the fall impact,
the velocity and the posture

Forward falls, backward
falls, lateral falls left and
right all performed with
both legs straight and
with knees relaxed

10 male subject
(age 24–35)

SP: 100% Waist Yes The algorithms were tested
against ADL performed by

elderly subjects
10 older subjec
(6 male, 4 femal

age 73–90)

SE: 94.6%

Lai et al. [41] 2011 Several
acceleration

sensors for joint
sensing fall
events

TBM to differentiate dynamic/
static states using the

acceleration of the three axis

Forward, backward,
rightward or leftward

falls

16 subjects Accuracy
92.92%

Neck,
hand,
waist,
foot

No After a fall accident occurs,
the system determines the

level of injury

Bagala et al. [9] 2012 Benchmark the
performance of
published fall-
detection

methods when
they are applied
to real-world falls

TBM including, among others,
the algorithms published in

[35,36]

Real-world falls: indoor/
outdoor, forward

/backward /sideward,
impact against the floor
/wall or locker before
hitting the floor / sofa

or bed/ desk

9 subjects (7 wom ,
2 men, age: 66.4± )

Average 13
algorithms

Lower
back

Yes Algorithms that were
successful at detecting
simulated falls did not
perform well when

attempting to detect real-
world falls

SP: 83.0%
±30.3%

15 subjects

29 subjects SE: 57.0%

1 subject ±27.3%

Yuwono et al. [43] 2012 Use of a
sophisticated fall

detection
method

MLM. 1) Discrete wavelet
transform, 2) Associate a cluster
to the input feature vector; fuse
cluster information with input, 3)
Combined classification (vote
majority): Multilayer Perceptron
and Augmented Radial Basis

Function

Not specified 8 individuals
(age 19–28)

SP: 99.6% Waist No Training and clustering are
done off-line. Clustering is
done using Regrouping

particle swarm optimization

SE: 98.6%

Kerdegari et al. [44] 2012 Investigation of
the performance

of different
classification
algorithms

MLM. Input is pre-processed
using windowing techniques.
Features include acceleration,
angular velocity, velocity,
position and time domain

features: maximum, minimum,
mean, range, variance and
standard deviation. Several
methods are compared.

With flexed knees:
forward, backward,

sideways falls

50 volunteers (18 m le,
32 female, averag

age 32)

SE: 90.15% Waist No Multilayer Perceptron, Naive
Bayes, Decision tree, Support
Vector Machine, ZeroR and

OneR algorithms are
compared.Base on wall: backward,

sideways falls

Backward falls sitting
on empty, turning left

and right

Results show that the
Multilayer Perceptron

algorithm is the best option
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Table 3 Comparison of acceleration based fall detectors using external accelerometers (Continued)

Cheng et al. [47] 2013 Daily activity
monitoring and
fall detection

TBM using a decision tree: 1) A
decision tree is applied to the
angles of all the body postures
to recognize posture transitions,
2) the impact magnitude is

thresholded to detect the falls

Four types of falls: from
standing to face-up

lying, face-down lying,
left-side lying, and
right-side lying

10 subjects (6 ma ,
4 females, age 22– 6)

SE: 95.33% Chest No Dynamic gait activities are
also identified using Hidden
Markov Models. Surface

electromyography signals are
combined with the
acceleration signals.

SP: 97.66% Thigh

TBM: Threshold Based Method, MLM: Machine Learning Method.
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from young volunteers. As in the previous section, longer real-world tests with target

users would be required.

Nearly all the studies concur that the broader categories of typical fall events are for-

ward, backward and sideways, although some of them extend these categories to cover

a large number of fall situations [33,38,39]. Regarding the position of the accelerometer,

the placement site at the waist seems to be optimal for fall detection. Waist attached

accelerometers are located near the body’s centre of gravity, providing reliable informa-

tion on subject body movements [36].

As in the previous category, the declared performance is very high, but the fact is

that there is little use of these devices in daily geriatric practice and no significant in-

dustrial deployment of fall detectors due mainly to the significant number of false

alarms, resulting in inappropriate alerts [8]. The declared results are valid for labora-

tory environments with limited data or under restricted conditions, but in real-world

scenarios there are lots of uncontrolled factors that lead to a dramatic loss in per-

formance [9]. Therefore, studies should incorporate longer tests and include indica-

tors closer to a real-world usage, for example the number of false alarms per day,

which may provide target users with a more realistic idea of the true performance of

the system.

Smartphone built-in accelerometer

Today’s smartphones come with a rich set of embedded sensors, such as an accelerometer,

digital compass, gyroscope, GPS, microphone, and camera [48]. Several researchers are

currently taking advantage of this fact to develop smartphone based fall detectors. Table 4

summarizes some relevant works in this field.

Low-complexity algorithms based on thresholding are used in most of the studies

[49-53], and only few go further and adopt machine learning strategies [54,55]. They

use Support Vector Machines, Sparse Multinomial Logistic Regression, Naïve Bayes,

K-Nearest Neighbors, Decision Trees [54] and Multi-layer Neural Networks [55].

The types of falls considered and the number of subjects involved in the studies are

similar to those of the previous section. Regarding the position of the phone, the waist

is still the preferred part of the body [52,55], although there is an emerging trend towards

the thigh, coinciding with the location of the pocket [49-51,53].

Some of these studies [49] have resulted in real fall detection applications that are

available for download in Google Play [56]. This site offers another source of information.

Thus, a search has been conducted in this repository including either “fall detector” or

“fall detection” as the keywords. As a result, a total of 9 applications were obtained, of

which 7 were for seniors. To quote some statistics, 3 of them reported between 1000 and

5000 downloads, while the rest had less than 500. Although these numbers indicate a

certain level of interest, they are still far from the number of potential users. Focusing

on the app rating, we found that an average of only 6 people have given their opinions

on them. This is a symptom that people using these apps do not seem to be enthusiastic

about them.

The number of published studies based on smartphones is still low in comparison with

the previous categories, and none of them involve older people to evaluate the detector.

Therefore, studies still need to incorporate a more exhaustive evaluation. These are signs

that we are facing an emerging field.



Table 4 Smartphone based fall detectors

Article Year Basis Detection technique Fall types Study design Declared
perform

Position Elders
Yes/No

Comments

Sposaro et al. [49] 2009 Alert system for fall
detection using smart

phones

TBM considering the
impact, the difference in
position before and after
the fall and whether the
fallen patient is able to
regain the upright

position

Not included Not included Not included Thigh
(pocket)

No First documented mobile
phone-based fall detector

The existence of a lying
period after falling is checked

Dai et al. [50] 2010 Mobile phones as a
platform for

developing fall
detection systems

TBM considering the
impact, the wearer’s
orientation and the

common step mechanics
during falling

Forward, lateral and
backward falls with
different speeds (fast
and slow) and in

different environment
(living room, kitchen,

etc.)

15 participants
from 20 to 30 years old
(2 females, 13 males)

Good detection
performance

Chest,
waist,
thigh

No A detection algorithm with
an external accessory is

included

Lopes et al. [51] 2011 Application to detect
and report falls,
sending SMS or

locating the phone

TBM considering the
impact

Fall into bed, forward
fall, backward fall, fall

in slow motion

Not specified Not specified Thigh No Five scenarios to validate the
detector are presented. Each
scenario includes ADL and

falls.

Albert et al. [54] 2012 Demonstrate
techniques to not

only reliably detect a
fall but also to

automatically classify
the type

MLMs using a large time-
series feature set from the

acceleration signal.

Left and right lateral,
forward trips, and
backward slips

15 subjects (8 females,
7 males, ages 22–50)

Across an
average week of

everyday
movements
there are 2–3
non-falls

misclassified as
falls

Back No Five machine learning
classifiers are compared:
Support vector machines,
Sparse multinomial logistic
regression, Naïve Bayes, K-
nearest neighbours, and

Decision trees

Lee et al. [52] 2012 Study the sensitivity
and specificity of fall
detection using
mobile phone
technology

TBM considering the
impact

Forwards, backwards,
lateral left and lateral

right

18 subjects (12 males,
6 females, ages 29±8.7)

SP: 81% Waist No The motion signals acquired
by the phone are compared
with those recorded by an
independent accelerometer

SE: 77%
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Table 4 Smartphone based fall detectors (Continued)

Fang et al. [53] 2012 Fall detection
prototype for the
Android-based

platform

TBM considering the
impact and the patient’s

orientation

Not specified 4 subjects SP: 73.78% Chest,
waist
thigh

No Different phone-attached
locations are analysed. The
chest seems to be the best

place.

SE: 77.22%

Abbate et al. [55] 2012 A system to monitor
the movements of
patients, recognize a
fall, and automatically
send a request for

help to the caregivers

MLM Eight acceleration
properties of fall-like

events are classified using
multi-layer feed-forward

neural network

Forward fall, backward
fall, and faint (normal

speed and slow
motion)

7 volunteers (5 male,
2 female, ages 20–67)

SP: 100% Waist No The proposed approach is
compared with the

techniques described in
[35,36,49,66]

SE: 100%
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Discussion
Trends, challenges and issues

Based on the extensive literature search, challenges, issues, and trends in fall detection

systems have been identified. This section presents the most relevant ones.
Trends

We start by describing the current and future trends in fall detection systems.

Trend 1: Vision and smartphone-based detectors

Context-aware techniques appeared over a decade ago and the number of studies is still

increasing after a drop some years ago (Figure 1), most of them being video-based systems.

It is unfortunate that the algorithmic details of these systems do not seem to converge.

Computer Vision approaches are very complex and it is difficult to obtain a system that

can work under real life conditions. On the other hand, the use of body-worn accelerome-

ters has stagnated in the last years, but this trend is offset by the increase in the num-

ber of smartphone-based studies. In fact, this is still a novel technology: the first study

using smartphones appeared in 2009 [49] and since then the research in this field has

grown steadily. These are signs that we are facing an emerging trend, which may be

explained by the advantages offered by smartphones. As self-contained devices, they

present a mature hardware and software environment for developing pervasive fall de-

tection systems [50]. They have built-in communication protocols that allow simple

data logging to the device and wireless transmission. Price is also significantly reduced

due to high production volume [54,57].

Trend 2: Machine learning approach

There are two main approaches to detect falls using acceleration signals: thresholding

techniques and machine learning methods. Applications based on the first approach
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are simple to implement and their computational work is minimal. They are able to

detect when a fall occurs. However, the rate of false positives is a significant issue [54].

The machine learning approach is more sophisticated and leads to better detection

rates. Nevertheless, there have been documented difficulties with implementing these

techniques (for example: requirement of high mathematical skills, use of more computa-

tion resources, etc.), although they are currently the prevailing trend, since thresholding

methods proved to be ineffective [9]. In addition, no method has been widely accepted

and each paper presents a different approach among the variety of machine learning

algorithms.

Challenges

The design of fall detectors faces some major challenges described in this section.

Challenge 1: Performance under real-life conditions

Fall detectors need to be as accurate and reliable as possible. A robust fall detection

system should exhibit both high sensitivity and specificity. This is sometimes reached

in experimental environments, but when applied to a real situation, the detection rate

decreases [8]. These devices are designed and tested under controlled conditions, for

example they use data from falls and ADL of young people simulated at the discretion

of each author due to the lack of a standardized procedure or a public database for

comparison. Furthermore, it is worth pointing out that fall detectors are aimed at older

people, so they should also be involved in their development. Only few studies incorporate

data from older people [9,33,35,37,40,45], although their participation is limited to per-

form a set of simulated activities of daily living for a few minutes or hours. That is not

enough to assess the system performance in a real situation. Users should wear the de-

vices for longer periods (at least months). Some studies have worked in this direction

[4,9], resulting in a significant number of false activations, among other concerns.

Challenge 2: Usability

Smartphone-based fall detectors are attractive because of the widespread use of phones,

even among the older population [58]. However, the majority of the studies referenced

in Table 4 placed them in a standardized position. This allowed highly stereotypical

measurements that aided accuracy ratings, but made the results less applicable to the

way people carry their smartphones every day (for example: in pockets or handbags)

[54]. Future smartphone-based detectors should not limit the placement of the device

to a single part of the body (waist, wrist, chest, etc.). Smartphones should be used in a

normal way, with no restrictions regarding their position or functionalities. This may

lead to lower detection rates.

Challenge 3: Acceptance

Little is published about the practicality and acceptability of the technology. Elders’

acceptance poses a major problem since they may not be familiar with electronic de-

vices. To overcome this challenge, the way the system operates is essential [59]. The

detector should activate and operate automatically, without user intervention. Vision

systems, like other non intrusive methods, are very good in this sense. However, some

wearable devices like smartphones have other advantages that can help to improve

the acceptance of fall detectors. They can operate both indoors and outdoors and
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integrate not only fall detection but also other healthcare applications in the same de-

vice. In this way, the traditional reluctance to carry different devices, each one

targeting a specific function, would be overcome. However, the use of smartphones by

older people is not without difficulty: these devices, as they were conceived, represent

a major usability barrier for them. Proof of this is the absence of rating in the existing

fall detection applications, which is a symptom of little real use. In this sense, poten-

tial solutions to improve the usability and accessibility of smartphones are needed.

Nevertheless, as a result of a study still in progress we have found that fall detectors

were highly valued by the elderly, who showed a positive attitude towards smartphone-

based solutions after carrying out a practical demonstration of several assistive tech-

nologies. This conclusion agrees with the work of Plaza et al. [60], who reviewed mobile

applications for older people and found that they are most frequently related to two

domains: “Health – wellness – home care” and “Safety – security – mobility”.

Issues

This section describes the most significant issues which could hinder the system

performance.

Issue 1: Smartphone limitations

The trend towards smartphone-based detectors poses some problems. Firstly, smartphones

are not devices initially intended for fall detection or any other safety critical application

[49]. There might be difficulties with real-time operations, the sensing architecture,

the stability of the accelerometer’s sampling frequency, the specific features of the op-

erating system, etc. Indeed, the same fall detector might behave slightly differently

depending on the smartphone model in which it is installed. This possibility should

be taken into account in a real-world scenario. Secondly, smartphones cannot be

overloaded with continuous sensing commitments that undermine the performance

of the phone, for example by depleting battery power. It is essential to manage the

sleep cycle of sensing components in order to trade off the amount of battery consumed

[48]. Nonetheless, smartphone’s battery life is always low, which could hinder its accept-

ance. This is not a minor problem, especially considering that the system is intended for

older people with impaired mobility. Thirdly, there is a need for easy-to-use smartphones

and here we are in the hands of manufacturers. The potential market of the applications

for people with low technical skills will influence the development of adapted devices.

Nonetheless, fall detectors are unlikely to reach in the near future the robustness and sta-

bility achieved by other assistive technologies such as press-for-help devices.

Issue 2: Privacy concerns

Privacy concerns of sensor-based systems, and fall detectors are, have been a hot topic

[61]. Of course, not all types of sensors are equally vulnerable: context-aware systems

in general, and vision-based systems in particular, are much more prone to privacy con-

cerns than, for example, body-worn acceleration-based devices. In any case, the protec-

tion of sensitive context data must be guaranteed [62]. Privacy problems should not

prevent the potential benefits of assistive technologies as, at the same time, privacy

cannot be sacrificed in order to bring about other benefits [63]. In general, studies on

fall detection usually lack strategies to ensure data privacy. This shows that they are

still far from a real-life deployment.
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Issue 3: Comparison among different techniques: public data bases

Comparing different approaches is difficult because each author obtains data in a different

way: types of simulated falls and ADL, position of the detector, sampling frequency, tem-

poral length of signal, extracted features, etc. The research focus should be not only on

the algorithm to be used but also on the way signals are acquired and treated before feed-

ing a classifier. A public database with accelerometer signals and videos of people falling

could help to compare different methods and to improve the reproducibility of the results.

Sharing source code of the algorithms would also be a valuable option.

Issue 4: Real-life falls

Most studies use data of simulated ADL and falls from young or mature people. Even

assuming they were made publicly available for a fair comparison among different methods,

it is unclear whether the simulated activities are representative of their real counterparts.

Since it is not acceptable to subject older people to simulated falls, the evaluation of

the detectors is severely limited. Only few studies present acceleration data from the

real-life falls of older people [64,65], but the number of events recorded remain low. In

addition, the mechanisms of the falls are not known as they could not be accurately

documented [36].

Conclusion
In conclusion, fall detection is a complex process for which currently there is not a

standardized solution. Fall detectors are essential in order to provide a rapid assistance

and to prevent fear of falling and their adverse health consequences. This review pro-

vides a classification for fall detectors from the analysis of several studies, examines

their evolution over time, and ultimately identifies the challenges, issues and trends in

fall detection systems.

The number of studies in vision-based systems is still increasing. Besides, there is a

new trend towards the integration of fall detectors into smartphones, but their use in

real-world scenarios can still be compromised by the factors highlighted in this paper.

Both biomedical engineers and clinicians should become aware of the limitations and

potential of fall detection systems.
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