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Abstract

Background: Arterial stiffness is a major contributor to cardiovascular diseases.
Because current methods of measuring arterial stiffness are technically demanding,
the purpose of this study was to develop a simple method of evaluating arterial
stiffness using oscillometric blood pressure measurement.

Methods: Blood pressure was conventionally measured in the left upper arm of 173
individuals using an inflatable cuff. Using the time series of occlusive cuff pressure
and the amplitudes of pulse oscillations, we calculated local slopes of the curve
between the decreasing cuff pressure and corresponding arterial volume. Whole
pressure-volume curve was derived from numerical integration of the local slopes.
The curve was fitted using an equation and we identified a numerical coefficient of
the equation as an index of arterial stiffness (Arterial Pressure-volume Index, API). We
also measured brachial-ankle (baPWV) PWV and carotid-femoral (cfPWV) PWV using a
vascular testing device and compared the values with API. Furthermore, we assessed
carotid arterial compliance using ultrasound images to compare with API.

Results: The slope of the calculated pressure-volume curve was steeper for
compliant (low baPWV or cfPWV) than stiff (high baPWV or cfPWV) arteries. API was
related to baPWV (r = -0.53, P < 0.05), cfPWV (r = -0.49, P < 0.05), and carotid arterial
compliance (r = 0.32, P < 0.05). A stepwise multiple regression analysis demonstrated
that baPWV and carotid arterial compliance were the independent determinants of
API, and that API was the independent determinant of baPWV and carotid arterial
compliance.

Conclusions: These results suggest that our method can simply and simultaneously
evaluate arterial stiffness and blood pressure based on oscillometric measurements of
blood pressure.
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Introduction
Arterial stiffness is a major contributor to cardiovascular disease [1-3], while we and

other groups have demonstrated that regular endurance exercise or diet control

improves arterial stiffness [4-7]. Thus the early detection and the daily control of arter-

ial stiffness is a focal point to prevent cardiovascular disease. Arterial stiffness should

be assessed in daily living as well as clinic accordingly. Currently, pulse wave velocity

(PWV) using applanation tonometry, or arterial compliance using ultrasonography and

applanation tonometry are used to assess arterial stiffness. Although these techniques

are clinically and experimentally accepted, simpler and easier methodologies are
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required because the application of tonometry transducers or ultrasound probes on

target arteries can be rather difficult.

We therefore aimed to develop a simple and non-invasive method of evaluating

arterial stiffness using oscillometric measurements of blood pressure. When blood

pressure is measured by cuff oscillometry, brachial arterial volume decreases with infla-

tion of the cuff wrapped around the upper arm, and the arterial volume returns with

cuff deflation. Theoretical studies using computer simulation suggest that the relation-

ship between the decreasing cuff pressure (increasing intra-arterial pressure) and the

corresponding brachial arterial volume can be described as a sigmoid curve [8-10].

Additionally, the slope of the curve is steeper in a compliant than that in stiff artery

[10]. Previous studies using isolated arteries from animals and humans have also

demonstrated that elastic property of the arterial wall can be evaluated by relationships

between intra-arterial pressure and arterial volume [11-17]. If the curve relationship

between cuff pressure and arterial volume during cuff deflation was actually analyzed,

arterial stiffness could be assessed as the slope of the curve.

The purpose of this study was to develop a method of evaluating arterial stiffness by

assessing the curve between cuff pressure and arterial volume using oscillometric

blood pressure measurement. We then validated the method by comparison with PWV

and arterial compliance. This novel methodology allows simple and simultaneous mea-

surements of blood pressure and arterial stiffness.

Methods
Subjects

We studied 173 healthy volunteers (89 males and 84 females) aged 22 to 75 (48 ± 1)

years. The purpose and procedures of this study were explained to the volunteers, who

then provided written informed consent to participate. The Ethics Committee of the

Institute for Human Science and Biomedical Engineering of the National Institute of

Advanced Industrial Science and Technology reviewed and approved the study

protocols.

Curve relationship between cuff pressure and arterial volume

Computer simulations have suggested that the relationship between cuff pressure and

arterial volume during cuff deflation can be described as a sigmoid curve (Figure 1)

[8-10] and that blood volume pulses or cuff oscillations can be generated by transform-

ing blood pressure pulses [8]. When blood pressure pulses are generated at different

cuff pressures, as shown below the horizontal axis of Figure 1, corresponding blood

volume pulses or cuff oscillations can be described, as shown on the left of the vertical

axis. Based on this theory, local slopes of the pressure-volume curve can be calculated

from the occlusive cuff pressure for pulse pressure (systolic - diastolic blood pressure)

and the amplitude of cuff oscillations. Thus, we calculated local slopes from cuff pres-

sure and cuff oscillations, and obtained pressure-volume curves by numerically inte-

grating the local slopes.

In the experimental day, a conventional blood pressure cuff was wrapped around the

left upper arm of seated participants and was inflated to 190 mmHg at 10 mmHg/s,

and deflated to 10 mmHg at 3 mmHg/s. Cuff pressure during inflation and deflation

measured using a pressure transducer was stored in a computer at a sampling
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frequency of 1 kHz for off-line analysis. After recording cuff pressure, a low-pass filter

with a cutoff frequency of 0.5 Hz was applied to the raw cuff pressure, and a time ser-

ies of occlusive cuff pressure was obtained (Figure 2A). A band-pass filter of 0.5 - 10

Hz was applied to the raw cuff pressure to determine cuff oscillation evoked by the

blood pressure pulse (Figure 2B). The amplitudes of the cuff oscillations of every blood

pressure pulse were calculated (Figure 2C). Heart rate and blood pressure were mea-

sured oscillometrically and pulse pressure was calculated from systolic and diastolic

blood pressure. Using the amplitudes of all pulse oscillations and changes in the cuff

pressure for pulse pressure from the pressure point evoked by the pulses, we calculated

the local slopes of the curve between the cuff pressure and arterial volume (Figure 2D).

The slopes at all cuff pressures were averaged to estimate the slopes at an arbitrary

point on pressure-volume curves (Figure 2E). We calculated the numerical integration

of the averaged slopes to generate pressure-volume curves (Figure 2F) that were fitted

using the following equation to determine their characteristics:

F(x) = A arctan (Bx + C) + D

The numerical coefficient B of above equation was used to evaluate arterial stiffness

because coefficient B closely reflected the slope of the curve. We identified the numeri-

cal coefficient B as an arterial stiffness index and named it the arterial pressure-volume

index (API). Cuff pressure was measured three times and the average API was

Arterial
volume

Cuff
pressure
(mmHg)

200 0

Figure 1 Relationship between cuff pressure and arterial volume during cuff deflation. When blood
pressure pulses are generated at different cuff pressures as shown below the horizontal axis,
corresponding blood volume pulses or cuff oscillations can be described as shown on the left of the
vertical axis.
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calculated for each participant. The day-to-day coefficient of variation for API in a

pilot study on 8 subjects (4 male and 4 female, 22 - 55 years) was 6.0 ± 1.1%.

We measured the circumference of the left upper arm, because we indirectly esti-

mated the arterial pulse volume via the cuff oscillation and thus should examine the

effects of the fat or muscle size on API.
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Figure 2 Procedure to obtain curves between cuff pressure and arterial volume. A. Time series of
occlusive cuff pressure determined after applying a digital filter (low-pass filter at 0.5 Hz) to raw cuff
pressure. B. Cuff oscillation evoked by blood pressure pulse obtained after applying a digital filter (band-
pass filter of 0.5 - 10 Hz) to raw cuff pressure. C. Amplitudes of cuff oscillations of all blood pressure pulses.
D. Local slopes of curves between cuff pressure and arterial volume obtained from amplitudes of all pulse
oscillations and changes in cuff pressure for pulse pressure. E. Average of local slopes of curve at all cuff
pressure values. F. Pressure-volume curve calculated from numerical integration of averaged slopes.
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Pulse wave velocity (PWV)

We measured brachial-ankle (baPWV) and carotid-femoral (cfPWV) pulse wave velo-

city using a vascular testing device (Form PWV/ABI, Omron Healthcare, Kyoto, Japan)

as we described [18]. Carotid and femoral arterial pressure waveforms were stored for

30 s using applanation tonometry sensors attached to the left common carotid artery

and left common femoral artery. Bilateral brachial and post-tibial arterial pressure

waveforms were stored for 10 s by occlusion/sensing cuffs adapted to both arms and

ankles. The waveform analyzer measured the time intervals between the carotid and

femoral arterial pressure wave (Tcf), and between the brachial and post-tibial arterial

pressure wave (Tba). The arterial pressure wave was identified as the start of the sharp

systolic upstroke, which was automatically detected using a band-pass filter (5 - 30

Hz). The path length from the carotid to the femoral artery (Dcf) was directly assessed

in duplicate with a random zero length measurement over the surface of the body with

a nonelastic tape measure [19]. The path lengths from the heart to the brachial artery

(Dhb), from the heart to the femur (Dhf), and from the femur to the ankle (Dfa) were

automatically calculated in cm using the following equations [20]:

Dhb = (0.220× height− 2.07)

Dhf = (0.564× height− 18.4)

Dha = (0.249× height− 30.7),

where height is in cm,

and then baPWV and cfPWV were calculated as:

baPWV = (dhf + Dfa−Dhb/Tba)

cfPWV = Dcf/Tcf

Carotid arterial compliance

We also compared the API with carotid arterial compliance, although the sample size

was limited to 92 of the 173 participants. Carotid arterial compliance was determined

using a combination of ultrasound imaging of the common carotid artery and carotid

arterial blood pressure as we described [21]. Carotid arterial blood pressure was nonin-

vasively measured using applanation tonometry (Form PWV/ABI, Omron Healthcare,

Kyoto, Japan). Longitudinal B-mode images of the right common carotid artery were

obtained ultrasonically (SonoSite 180PLUS, SonoSite Inc., Bothell, WA, USA) with a

high-resolution linear-array transducer (10 MHz) placed at 1 to 2 cm proximal to the

carotid bulb, with an approximately 90° angle to the vessel so that the near and far

wall interfaces were clearly discernible. The ultrasound images were recorded on digital

videotapes for offline analysis. The ultrasound images were stored in a computer at

30 Hz and analyzed using image-analysis software (ImageJ 1.32J, NIH, Bethesda, MD,

USA). One investigator who was blinded to the subject characteristics performed all

image analyses. Carotid arterial lumen diameter was determined as the distance

between the vessel far-wall boundary corresponding to the interface between the

lumen and intima. The near-wall boundary was defined as the interface of the
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adventitia and media at minimal diastolic relaxation and at maximal systolic expansion

of the vessel. Arterial lumen diameter at minimal diastolic relaxation and maximal sys-

tolic expansion of the vessel were measured at three points per video frame and then

averaged. Each parameter was averaged over 10 - 15 continuous beats and statistically

analyzed. Arterial compliance was determined using the equation:

(CSAs - CsAd)/�P,

where CSAs and CSAd are cross-sectional areas at the maximal systolic expansion

and at the minimal diastolic relaxation of the carotid artery, and ΔP is the carotid

arterial pulse pressure. In addition to arterial compliance, the b-stiffness index was

analyzed using the equation:

In(cSAP/cDAP)×D/�D,

where cSAP and cDAP are systolic and diastolic carotid arterial blood pressure, D is

end-diastolic carotid lumen diameter and ΔD is the change in carotid lumen diameter

between end diastole and peak systole [22]. The b-stiffness index provided an index of

arterial compliance adjusted for distending pressure [22].

Experimental protocol

Subjects abstained from food and caffeine for at least 4 h before the experiment. Mea-

surements were taken in a quiet, temperature-controlled room (24 - 26°C). API, PWV

and carotid arterial compliance were measured on the same day in random order.

Statistical analysis

The relationships between baPWV, cfPWV, carotid arterial compliance, or age and the

API were analyzed using a linear regression model and Pearson’s correlation

coefficient.

To determine which factor explained a given dependent variable, a stepwise multiple

regression analysis was carried out. The selected parameters for the analysis were API,

baPWV, carotid arterial compliance, mean arterial blood pressure (MAP), and the cir-

cumference of the left upper arm. Dependent variables were API, baPWV, or carotid

arterial compliance. Independent variables were all of the rest. Parameters were

selected with a caution of multicollinearity among the independent variables. Conse-

quently, cfPWV and age were excluded, because cfPWV was strongly correlated with

baPWV (r = 0.85) and age was significantly related with all of the parameters of arter-

ial stiffness (baPWV, carotid compliance, and API) and MAP.

Statistical significance was defined at P < 0.05 for all data, which are expressed in the

text and figures as means ± SE.

Results
The averaged oscillometric arterial blood pressure values were as follows: systolic, 123 ± 1

mmHg; mean, 93 ± 1 mmHg; diastolic, 75 ± 1 mmHg; and the average heart rate was

65 ± 1 beats/min. The averages baPWV and cfPWV were 1333 ± 16 cm/s and 879 ±

12 cm/s, respectively, and the average API was 0.0408 ± 0.0006 U. The coefficient of varia-

tion of replicate measurements at the experimental day (intra individual of three time

measurements) for API was 7.5 ± 6%.
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Figure 3 shows examples of the relationship between cuff pressure and arterial

volume during cuff deflation in one participant with a relatively compliant artery

(baPWV, 1079 cm/s; cfPWV, 867 cm/s; age, 31 years), and in another with a relatively

stiff artery (baPWV, 1700 cm/s; cfPWV, 1119 cm/s; age, 67 years). Arterial volume

increased with cuff deflation, and the relationship between cuff pressure and arterial

volume was described as a sigmoid curve for both individuals. The slope of the curve

was steeper for the compliant than for the stiff artery. When the pressure-volume

curves from both individuals were fitted to the equation F(x) = arctan (Bx + C) +D,

the numerical coefficient B (API) was higher for the compliant than for the stiff artery

(API, 0.0480 vs. 0.0276).

Figures 4A and 4B show the relationships between baPWV and API, and between

cfPWV and API in all participants. We found that API was related to baPWV and

cfPWV, and (baPWV, r = -0.53, P < 0.05; cfPWV, r = -0.49, P < 0.05). API was also

related to carotid arterial compliance as shown in Figure 4C (r = 0.33, P < 0.05), and

b-stiffness index (r = -0.34, P < 0.05). We also found that API was related to age as

shown in Figure 4D (r = -0.40, P < 0.05).

A stepwise multiple regression analysis revealed that baPWV (b = -0.26) and carotid

arterial compliance (b = 0.19) as well as MAP (b = -0.28) and the circumference of the

upper arm (b = -0.21) were the independent determinants of API. On the contrary,

API (b = -0.19) and MAP (b = 0.61) were the independent determinants of baPWV.

API was also the independent determinants of carotid arterial compliance (b = 0.32).
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Figure 3 Relationship between cuff pressure and arterial volume during cuff deflation in two
individuals. A (——) and B (—) represent participants with relatively compliant (baPWV, 1079 cm/s;
cfPWV, 867 cm/s; age, 31 years) and relatively stiff (baPWV, 1700 cm/s; cfPWV, 1119 cm/s; age, 67 years)
arteries, respectively.
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Discussion
We aimed to develop a method of evaluating arterial stiffness using oscillometric blood

pressure measurement. The major new findings in this study were that a curve rela-

tionship between cuff pressure and arterial volume could be derived from blood pres-

sure pulse obtained from oscillometric blood pressure measurement, and that after

fitting an equation to the curve, a numerical coefficient of the equation (arterial stiff-

ness index) was related to PWV(baPWV and cfPWV) and carotid arterial compliance.

Furthermore, a stepwise multiple regression analysis demonstrated that baPWV and

carotid arterial compliance were the independent determinants of API, and that API

was the independent determinant of baPWV and carotid arterial compliance. These

results suggest that arterial stiffness can be evaluated using our method based on oscil-

lometric blood pressure measurement.

Only few methods have so far been proposed to assess arterial stiffness using oscillo-

metric blood pressure measurement [23,24]. Liu et al. proposed a method for evaluat-

ing brachial arterial compliance using the oscillometric pulse [23]. Their method is

based on oscillometric blood pressure measurement, but requires a record of not only

the cuff pressure with a pressure transducer, but also the cuff volume with an air flow

meter. The method examined by Sato et al. assesses arterial stiffness with evaluating

the shape of the oscillometric envelope [24]. This method requires only cuff pressure

recording, but the calculated index of arterial stiffness varies so that the measurement
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Figure 4 Relationships between new arterial stiffness index (Arterial Pressure-volume Index, API)
and other arterial stiffness parameters or age. A. Relationship between brachial-ankle PWV (baPWV)
and API. B. Relationship between carotid-femoral PWV (cfPWV) and API. C. Relationship between carotid
arterial compliance and API. D. Relationship between age and API.
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was repeated five times and the maximum and minimum values were excluded [24]. In

the present study, we proposed a method that can assess arterial stiffness with record-

ing only cuff pressure. Additionally, the coefficient of variation of replicate measure-

ments at the experimental day for API was 7.5 ± 6%, which is comparable to that for

cfPWV (7 - 8%) previously reported [19,25]. Furthermore, the day-to-day coefficient of

variation for API in our pilot study was 6.0 ± 1.1%, whereas that for cfPWV and caro-

tid arterial compliance in the previous studies were 5 - 9% [4,26]. Taken together, our

method can assess arterial stiffness with recording only cuff pressure and the calcu-

lated arterial stiffness index (API) has reproducibility that is comparable to cfPWV and

carotid arterial compliance.

It is possible that the slope of the pressure-volume curve in this study correlates with

brachial artery stiffness. When blood pressure is measured oscillometrically, decreasing

cuff pressure increases transmural pressure of the brachial artery wall, causing the bra-

chial artery to distend and arterial volume to increase. Vessel distension corresponding

to transmural pressure would be greater in a compliant than in a stiff brachial artery.

Hence, the slope of the pressure-volume curve between cuff pressure and arterial

volume would be steeper for those with a compliant brachial artery. This concept is in

agreement with previous studies that have assessed relationships between changes in

intra-arterial pressure and in corresponding vessel diameter using isolated arteries

from humans and animals [11-17]. For example, the slope of the pressure-diameter

curve of the atherosclerotic iliac artery is gentle and the calculated elastic modulus of

the arterial wall increases in dogs fed with a high-cholesterol diet for 12 months [15].

Furthermore, a computer simulation that described the curve between transmural pres-

sure and arterial volume during deflation of a cuff wrapped around the upper arm also

found a steeper slope in compliant than in stiff brachial arteries [10]. According to the

present and previous findings, the slope of the curve between the cuff pressure and

arterial volume seems to vary depending on the stiffness (compliance) of the brachial

artery. Thus, the arterial stiffness index (API) developed herein would reflect brachial

arterial stiffness.

Although the API would reflect brachial arterial stiffness, it correlated with cfPWV,

an arterial stiffness index of central arteries such as the aorta. One interpretation of

this finding is that individuals with stiff (or compliant) central arteries also have stiff

(or compliant) peripheral arteries. Arterial stiffness of the central arteries increases

with advancing age [4,11,12,14], whereas the effect of age on the peripheral arteries is

still controversial. However, API that is derived from brachial artery pulses was nega-

tively correlated with age in the present study (Figure 4D). In agreement with this find-

ing, the large peripheral arteries of the arms and legs as well as the aorta stiffen with

age [27], although arterial stiffness with age is relatively modest in the peripheral

arteries compared with the central arteries [27,28]. Different from the modest effects of

age, regular endurance exercise in humans increases both femoral and carotid arterial

compliance [29] and a high cholesterol diet in dogs increases iliac and carotid arterial

stiffness [15]. It was noted that the effects of the exercise and high cholesterol diet on

compliance/stiffness of femoral and iliac artery were greater than that of carotid artery

[15,29]. Collectively, aging and lifestyle such as exercise and diet alters peripheral and

central arterial stiffness in parallel, although the effects of age on peripheral artery

might be modest, and thus API might be correlated with cfPWV.
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API was correlated with PWV and carotid arterial compliance but the correlation

coefficients were relatively low. We consider that the low correlation coefficients are

probably due to the methodology differences rather than the poor validity of API.

Indeed, the correlation coefficients between carotid arterial compliance and baPWV or

cfPWV were also relatively low in the present study (r = -0.22; r = -0.14), despite the

accepted methods clinically and experimentally. One explanation for the law correla-

tions among methods is that each method does not entirely assess the same artery.

Additionally, each approach may partly evaluate the same property of the arterial wall,

but may also assess the different arterial properties. These might affect the correlation

coefficients among API and PWV or carotid arterial compliance.

Our developed method has important clinical implications. We developed an arterial

stiffness index based on oscillometric blood pressure measurements. If the algorithm

to calculate the index was added to an oscillometric device, blood pressure and arterial

stiffness could be simply and simultaneously measured. This would enable the early

detection of arterial stiffness and thus contribute to the prevention of cardiovascular

disease. Additionally, the API correlated with cfPWV, which is a stiffness index of the

central artery. To assess central arterial stiffness is clinically important because it is a

predictor of cardiovascular mortality [30,31]. The correlation between cfPWV and API

suggests that the developed index could be used as a tool to screen central arterial

stiffness. Furthermore, our developed methodology would be useful for daily control of

arterial stiffness. Endurance exercise training for 2-3 months improved arterial stiffness

[4-6], suggesting that arterial stiffness could be controlled in daily life. The developed

method would match this demand because it is simple and easy for use.

The potential limitations in this study should be discussed. Firstly, we evaluated

arterial volume indirectly via the oscillometric cuff pressure. Because, the muscles and

the fat exist between the brachial blood vessel and the cuff, the muscle or fat size may

affect on our estimated arterial volume, thereby API. Indeed, a stepwise multiple

regression analysis revealed that the circumference of the upper arm was an indepen-

dent determinant of API. This should be taken into account to use API. Secondly, we

did not evaluate arterial stiffness among individuals with diseases that are related to

this condition such as diabetes. Further studies are needed to examine whether our

method can detect arterial stiffness in such patients.

Conclusions
We developed a method of evaluating arterial stiffness by assessing the curve between

cuff pressure and arterial volume using oscillometric blood pressure measurement. The

pressure-volume curve was fitted using an equation and we identified a numerical

coefficient of the equation as an index of arterial stiffness. The developed index was

related to PWV (baPWV and cfPWV) and carotid arterial compliance.

List of abbreviations
API: Arterial Pressure-volume Index; baPWV: Brachial-ankle PWV; cfPWV: Carotid-femoral PWV; Tcf: The time intervals
between the carotid and femoral arterial pressure wave; Tba: The time between the brachial and post-tibial arterial
pressure wave; Dcf: The path length from the carotid to the femoral artery; Dhb: The path lengths from the heart to
the brachial artery; Dhf: The path lengths from the heart to the femur; Dfa: The path lengths from the femur to the
ankle; MAP: Mean arterial blood pressure.
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