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Abstract

Background: Electrotherapy is a relatively well established and efficient method of
tumor treatment. In this paper we focus on analytical and numerical calculations of
the potential and electric field distributions inside a tumor tissue in a two-
dimensional model (2D-model) generated by means of electrode arrays with shapes
of different conic sections (ellipse, parabola and hyperbola).

Methods: Analytical calculations of the potential and electric field distributions based
on 2D-models for different electrode arrays are performed by solving the Laplace
equation, meanwhile the numerical solution is solved by means of finite element
method in two dimensions.

Results: Both analytical and numerical solutions reveal significant differences
between the electric field distributions generated by electrode arrays with shapes of
circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays
with circular, elliptical and hyperbolic shapes have the advantage of concentrating
the electric field lines in the tumor.

Conclusion: The mathematical approach presented in this study provides a useful
tool for the design of electrode arrays with different shapes of conic sections by
means of the use of the unifying principle. At the same time, we verify the good
correspondence between the analytical and numerical solutions for the potential and
electric field distributions generated by the electrode array with different conic
sections.

Keywords: Electrotherapy, Electric field, Tumor

Background
Electrotherapy is the use of electrical energy as a medical treatment and it was introduced

to destroy solid tumors at the end of nineteenth century. Many physicians have success-

fully used this therapy, also known as electrochemical tumor therapy, Galvanotherapy and

electro-cancer treatment, as a standalone treatment in thousands of cases, with some truly

spectacular results [1-4]. Electrotherapy of a low-level direct current is used to treat the

cancer (target tissue) through two or more platinum (platinum-iridium 90/10, stainless

steel) electrodes placed in or near the malignant tumor. In this therapy, two modes are

Bergues Pupo et al. BioMedical Engineering OnLine 2011, 10:85
http://www.biomedical-engineering-online.com/content/10/1/85

© 2011 Bergues Pupo et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:berguesc@yahoo.com
http://creativecommons.org/licenses/by/2.0


used with similar results: voltage mode (voltage keeps constant and direct current intensity

varies due to changes in the tumor resistance) and current mode (direct current intensity

keeps constant for voltage variations because the tumor resistance is altered). In both

modes, the tumor electrical resistance variations may be explained by different bioeffects

induced in due to the application of this therapy.

The voltage mode produces less pain in the patient than the one induced for the

current mode. The voltage range usually used is 6 to 12 V, the electric quantity often

is 80 to 100 coulombs and the time needed to deliver this quantity is 20 to 120 min-

utes, in dependence of consistency, size and type of solid tumor. Permanent tissue

damages are observed for voltage values equal and higher than 6 V and convenient dis-

tributions of electrodes in the tumor, as shown in our current clinical trial (results not

shown) and [2-4]. As a result of these studies, 6 V may be considered as an irreversible

threshold.

The clinical results carried out up to now reveal that, in both modes, electrotherapy is

safe, effective, inexpensive, and induces minimal adverse effects in the organism. Also, it

can be applied when the conventional methods (surgery, radiotherapy, chemotherapy

and immunotherapy) fail. This anti-tumor therapy has not yet been universally accepted

because two main reasons: 1) its antitumor mechanism is not fully understood and 2) it

is not standardized [2-4]. The first reason is justified by the diversity of underlying anti-

tumor mechanisms, such as: change of pH [5], immune system stimulation [2,4,6], lost

of tissue water for electro-osmosis [7], the combined action of the toxic products from

electrochemical reactions (fundamentally those in which reactive oxygen species are

involved) and immune system stimulation [8], and the increase of the expression of

dihydronicotinamide adenine dinucleotide phosphate dehydrogenase (NADPH) oxidase

subunits-derived reactive oxygen species, which subsequently induces apoptosis of oral

mucosa cancer cells [9], among others. In spite of this, the underlying mechanisms more

widely accepted are the changes of pH and the toxic products from the electrochemical

reactions. These changes are justified because the regions around the anode and cathode

become highly acidic (pH ≤ 3) and highly basic (pH ≥ 10), respectively, when electro-

therapy is applied to the tumor area [2-4]. Although Li et al. demonstrated that at the

tumor center and areas far from the electrodes the pH is not modified and its value is

similar to that measured in the unperturbed tumors (pH varies between 6 and 7) [10]. In

a more recent work, Turjanski et al. demonstrated experimentally and theoretically that

pH fronts spread in space and time. In particular, between electrodes, two pH fronts

evolve expanding towards each other until collision [5]. The second reason is explained

by the fact that the dosage guideline is arbitrary and dose-response relationships are not

established. Also, different electrode placements are used however, optimal electrode

distribution has not been determined. Electrotherapy standardization from the experi-

mental point of view is complex, cumbersome, requires excessive handling of animals,

and expensive resources and time. As a result, a natural and quick efficient way (few

minutes) that may contribute to the standardization of this therapy is the mathematical

modeling.

Electric field strength and its form of distribution, through electrodes play a decisive

role in the electrotherapy effectiveness. The proposal for electrode arrays that efficiently

distribute the electric field (electric current density) in a tumor and its surrounding

healthy tissue is one of the most stimulating problems in the electrotherapy-cancer
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theme because the tumor may significantly be destroyed with the minimum damage in

the organism. Different studies reveal that the electric field (electric current density)

spatial distribution in tumor and its surrounding healthy tissue strongly depends on the

tumor size, electrodes array parameters (applied voltage on the electrodes, number, posi-

tioning, size, shape, and polarity of them) and the electric field orientation [11-16]. Also,

these distributions depend explicitly on the difference of conductivities of both tissues

[13,15,16]. The influence of some of these parameters has experimentally been verified

[3,4,6,17-19] and used to compute the power density distribution [20] and to increase

the anti-tumor synergism of this therapy by means of the combination of this therapy

with the intra-tumor injected saline solution, in agreement with previous results [3,4,21].

The good correspondence between the electric field spatial patterns obtained by experi-

mental and theoretically ways has been demonstrated by Šersa et al. by means of the

electric current density imaging technique [18]. Also, the influence of the ratio between

direct current applied to the tumor and that distributed in it has been included in the

Modified Gompertz equation [22].

In previous studies have been showed the two-dimensional (2D) analytical and

numerical expressions for the potential and electric field generated by electrode arrays

with circular [11,13] and elliptical [14,15] shapes. Jiménez et al. report three-dimen-

sional (3D) analytical expressions to calculate the electric current densities in the

tumor and its surrounding healthy tissue [16]. It has been reported that electric field

(electric current density) inside the tumor increases with the increase of the tumor

conductivity respect to that of its surrounding healthy tissue and when all electrodes

are completely inserted in tumor [15,16]. These electric field (electric current density)

spatial patterns and the conductivities in both tissues may be experimentally measured

by means of different imaging techniques [18,23-30].

At present, several researchers have attempted to construct three-dimensional anato-

mical models for tissues by means of the finite-element method; however, an exact rea-

listic tissue model is very difficult to establish from a computational point of view

because it requires a precise knowledge of the electric and physiologic properties of

both tissues. These electrical properties are the electrical conductivity, electrical per-

mittivity, among others, whereas, the physiological properties are the type, heterogene-

ity, size, shape, composition, structure, consistency and water content of the tissue.

An aspect not widely discussed in the specialized literature is the knowledge of how

the shape of electrode array affects the potential, electric field and electric current den-

sity distributions in order to improve the electrotherapy effectiveness. A significant

effort is required to comprehend this problem because the exact shapes of different

electrode arrays are usually not given, in spite of the existence of mathematical

approaches [11-16] and imaging techniques [18,23-30]. Consequently, there exists a

less exhaustive discussion of the comparison between these types of electrode arrays,

in spite of the intent of some researchers of evaluating specific electrode configurations

[1-4,6,17-19,31]. Precisely, the aim of this paper is to extend the results of Dev et al.

[11], Čorović et al. [13] and Aguilera et al. [14,15] to electrode arrays with different

shapes of conic sections (ellipse, parabola and hyperbola). For this purpose, we use the

unifying principle for the conic sections and the analytical and numerical solutions.

The potential and electric field distributions generated for each different conic section

are compared.
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Methods
Analytical calculations

Dev et al. [11], Čorović et al. [13] and Aguilera et al. [14,15] show, for the electrostatic

problem, that the analytical solution in 2D for the potential and electric field around

the needle electrodes can be obtained by solving Laplace equation, if the needle pene-

tration depth is larger than the distance between the electrodes. It is worth noting that

because any complex analytic function F(z), where z = x + iy, in a given region, is a

solution of the Laplace equation

��(z) = 0, (1)

then its real part function, denoted by Re (F(z)), is also solution at the same region.

In Equation 1, F(z) is the potential that can be written as a sum of multi-poles of all

electrodes [11]. The higher terms in multipole series are neglected with respect to the

leading terms of all electrodes if the distance between electrodes is larger than the

electrode radius. As a result, we can use the first term of this sum (lead order approxi-

mation, F0(z)) to calculate the electric field strength in lead order approximation,

named E0(z) by means of ▽F0(z). The details for the calculations of F0(z) and E0(z)

are reported in [11,13-15] and their analytical expressions are given by

�0 (z) =
N∑
n=1

Cn ln
(

a
z− zn

)
, (2)

E0 (z) =
N∑
n=1

Cn

(
a

z− zn

)
, (3)

where N represents the total number of electrodes placed on the array and z is the

position of the point where the calculations are made. a is the electrode radius and d

the smallest distance between two consecutive electrodes with alternate polarities.

zn = rneiφn is the position of the n-th electrode in the array. The coefficients Cn in (3)

are calculated from the boundary conditions of the electrodes and given in [11,13-15].

In Equation (2), a constant term is added if the number of electrodes is odd in order

to satisfy conservation of the current, as shown in [13].

The equations in polar coordinates for the conic sections (ellipse, parabola and

hyperbola) may be obtained by using the unifying principle for the electrode position

zn. In this way, rn can easily be shown to have a general expression in polar coordi-

nates (common in form of the three curves) if the origin of coordinates is located in

the conic focus, given by

rn =
me

1± e cos θn
, (4)

where m is the distance between the focus (F) and the directrix line (D), as shown in

Figure 1a. The straight line passing through F and perpendicular to D is assumed to be

the prime direction, from which the angles are measured. rn y θn are the polar coordi-

nates of the n-th electrode (with the origin on the point F). The parameter e is the

conic eccentricity that distinguishes the type of conic section: e < 1 (the locus is an

ellipse); e = 1 (the locus is a parabola) and e > 1 (the locus is a hyperbola). Although
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the unifying principle for the conic sections allows the possibility to obtain the polar

equations of all three curves (4), it should be remarked that in the case of hyperbola

this equation represents only one of its branches (that whose focus is at the origin),

rather than the entire curve. The plus sign corresponds to the left branch of the

hyperbola.

Figure 1b shows electrode arrays with different shapes: circle (Configuration I, e = 0),

ellipse (Configuration II, e = 0.6), parabola (Configuration III, e = 1) or hyperbola

(Configuration IV, e = 2). The expressions for the potential and electric field intensity

obtained for Configuration 1 are explicitly given in [11,13] (for rn = b: b is the circle

radius) and [14,15] (for rn = b1 = b2 = b: b1 and b2 are the major and minor radius of

the ellipse, respectively). It is important to point out that the expressions reported in

[11,13-15] are referred to the origin of coordinates in the conic center. Two additional

electrode arrays are used: one elliptical with e = 0.45 (Configuration II-1) and another

hyperbolic with e = 3 (Configuration IV-1), keeping constant parameter m in order to

evaluate the influence of parameter e. Table 1 shows the parameters e and m of each

one of these configurations.

Following the ideas of Čorović et al. [13], we assume that the ratio U/d = 0.115 V/mm

is a constant, where U is the potential difference between two nearest electrodes. As a

result, the potential in each electrode (V0) is ± V0 = U/2. Table 2 shows the values of d,

U and V0 for each one of these configurations. We fix the electrode radius (a = 0.215

Figure 1 Electrodes configurations. (a) Conic sections: ellipse (e < 1), parabola (e = 1) and hyperbola (e
> 1). (b) Electrodes array with shape of circle (I), ellipse (II), parabola (III) and hyperbola (IV). F, D, a, d, m, rn
and θn are defined in the text (see Method section).
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mm) and the number of the electrodes (six electrodes with alternate polarities). The

angular positions of these six electrodes (θ), with respect to the center of the conic, are

fixed in θ = 0, 60, 120, 180, 240 and 300° (for the circle and the ellipse), and θ = 0, 45,

135, 180, 225 and 315° (for the hyperbola). In the case of the parabola, the angular posi-

tions are referred to vertex in θ = 60, 65, 75, 285, 295 and 300°. In order to calculate the

equation (4), these positions are transformed to those with respect to the focus F.

Numerical Calculations

Numerical calculations are performed by using a finite element method for each elec-

trode array in 2D. The electrodes are placed inside a rectangle representing a homoge-

neous tissue having a constant conductivity. For the analytical and numerical

calculations, the electrodes are completely inserted in the tumor because the higher

electric field strength (electric current density) is induced in it with the minimum

damage in the surrounding healthy tissue [15,16].

A constant voltage is assigned to the boundary representing the electrodes surface.

Isolating boundary conditions are assigned to the outer boundaries of the rectangle.

The dimension of the outer square is 20 mm > 2d in all models, since 2d is the error

due to the finite size of the model is negligible. The values of the parameters e, m, a,

electrode potential and angular position of each electrode are the same as those used

for the analytical calculations. Model geometries are meshed by triangular finite ele-

ments. The final mesh is obtained by an adaptive method using a relative tolerance cri-

terion of 0.001.

The maximum (Emax, in V/mm), minimum (Emin, in V/mm) and norm (EE, in V/mm)

values are used to quantify the differences between the electric field distributions gener-

ated for each electrodes array. Emax and Emin represent the local characterization of the

electric field and EE is the global characterization of it. Indeed, EE is the sum of the

local electric field intensity over all points in the target tissue, given by

Table 1 Values of eccentricity (e) and distance between the focus and the directrix (m)

Types of electrode configurations Parameters of the electrode array

e m (mm)

Configuration I (circle) 0 -

Configuration II (ellipse) 0.6 7

Configuration II-1 (ellipse) 0.45 7

Configuration III (parabola) 1 7

Configuration IV (hyperbola) 2 7

Configuration IV-1 (hyperbola) 3 7

Table 2 Values of the potential (U) and distance between two closer electrodes (d) for
each electrode configuration

Types of electrode configurations d (mm) U (V) ± V0 (V)

Configuration I (circle) 5.00 0.575 0.288

Configuration II (ellipse) 5.50 0.633 0.316

Configuration II-1 (ellipse) 3.61 0.415 0.208

Configuration III (parabola) 2.25 0.259 0.129

Configuration IV (hyperbola) 5.81 0.668 0.334

Configuration IV-1 (hyperbola) 2.81 0.323 0.161

U/d is a ratio constant (0.115 V/mm).
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EE =

√√√√√ p∑
k=1

∣∣∣Ek
∣∣∣
2

. (5)

where Ek is the local electric field intensity in each point k (k = 1, ..., p) and p is the

total number of points in the target tissue (p = 32 248).

Finite element method and the expressions (2-5) are implemented in the MATLAB

software, version R2011a (License number: 625596. San Jorge University, Spain). The

analytical and numerical calculations are performed on a personal computer Intel Pen-

tium 4, dual-core processor 2.16 GHz CPU and 4 GB RAM. Each calculation takes

approximately one minute.

Results
Figure 2 shows the electric field distributions for the electrode array with different shapes:

circle (Figure 2a), ellipse (Figure 2b), parabola (Figure 2c) and hyperbola (Figure 2d). The

isolines are drawn for the electric field values from 0 to 0.115 V/mm with a constant step

of 0.01 V/mm. It illustrates how the electric field distributions in the tissue depend on the

shape of the electrodes array and that the highest electric field strengths are obtained in

the neighborhood of the electrodes. The electric field strength falls even more rapidly

towards the tumor edges in the perpendicular direction to the plane in which the electro-

des are. Also, these figures reveal that the electric field between the electrodes is non-

uniform whereas in the central region is uniform.

Table 3 shows Emax, Emin and EE values for each one of the configurations above

mentioned. These three quantities are calculated over all nodes within the work region.

This table and Figure 2 evidence that Configurations I, II and IV concentrate more the

electric field lines in the target tissue and show the higher values of these quantities.

In contrast, Configuration III concentrates less these lines in it and shows the smallest

values of EE and Emax. This configuration concentrates the electric field lines mainly

around the electrodes.

The comparison between the electrode elliptical arrays (Configurations II and II-1)

and electrode hyperbolic arrays (Configurations IV and IV-1) evidences that there exist

differences in the electric field distributions when parameter e varies, keeping constant

parameter m, the type of electrode configuration, the angular position and the polarity

of the electrodes. It is easy to check that electric field distribution generated for each

conic section changes when the electrode polarity and values of the parameter m are

varied (results not shown).

The analytical results are validated by the numerical calculations for each electrodes

configuration. Comparison of the numerical and analytical results are carried out by

plotting the potential (Figure 3) and electric field (Figure 4) along the y = 0 direction.

These figures show the behavior of these two physical quantities for the electrode arrays

with circular (Figures 3,4a), elliptical (Figures 3, 4b), parabolic (Figures 3, 4c) and hyper-

bolic (Figures 3, 4d) shapes. Figures 3 and 4 reveal a good agreement between the

numerical and analytical results inside each electrode array. Also, the numerical calcula-

tions reveal similar electric field distributions for each conic section than those shown

with the analytical calculations. However, in the outer region, the discrepancy between
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both solutions increases with the increase |x|. Similar results are observed in any

directions.

Discussion
In this paper we do not pretend to discuss whether the analytical solution is better

than numerical one or vice versa. The results demonstrate that the analytical calcula-

tions shown in [11,13-15] can be extended also to the electrode configurations used in

this paper. This mathematical approach is simple and constitutes a rapid and simple

method for visualizing both potential and electric field distributions inside the target

tissue without using special software for numerical modeling. That is why, we use the

analytical method to know the exact dependence of the potential and electric field dis-

tributions in function of the electrodes array parameters. The validity of this method

from the mathematical point of view is verified by the good agreement between analy-

tical and numerical solutions for each electrodes configuration in the area between the

Figure 2 Electric field spatial patterns. Analytical results of the electric field distributions for the electrodes
configurations with shapes of a) circle, b) ellipse, c) parabola and d) hyperbola defined in Fig. 1b.

Table 3 Values of the maximum electric field strength (Emax), minimum electric field
strength (Emin) and electric field norm (EE) for each electrode configuration

Types of electrode configurations Emax

(V/mm)
Emin

(V/mm)
EE

(V/mm)

Configuration I (circle) 37.5855 0.0000 44.9545

Configuration II (ellipse) 37.8268 0.0002 39.7075

Configuration II-1 (ellipse) 8.3062 0.0001 17.6613

Configuration III (parabola) 3.2166 0.0000 10.0745

Configuration IV (hyperbola) 30.1479 0.0002 32.7382

Configuration IV-1 (hyperbola) 6.9787 0.0000 16.1356
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Figure 3 Comparison of the analytical and the numerical solutions. The analytical and the numerical
solutions of the electric potential distribution along y = 0 direction generated by electrode arrays with
shapes of a) circle, b) ellipse, c) parabola and d) hyperbola defined in Fig. 1b.

Figure 4 Comparison of the analytical and the numerical solutions. The analytical and the numerical
solutions of the electric field distribution along y = 0 direction generated by electrode arrays with shapes
of a) circle, b) ellipse, c) parabola and d) hyperbola defined in Fig. 1b.
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electrodes. From the biological point of view, this validity may be reinforced by means

of an in vivo (ex vivo) tissue model.

We use 2D numerical and analytical models in order to compare the potential and

electric field strength, for different electrode configurations, in the central plane of a

more general 3D model. The 2D results are a good approximation of local electric

field distribution in 3D models for needle electrodes since these are usually long and

deeply inserted in tissue, as is reported in [13]. Also, these results evidence that the

electric field distributions depend markedly on the shape of electrodes array with

respect to target tissue. This is possible by means of the use of the unifying principle

for the conic sections that allows the knowledge of the exact geometry of the electrode

array in a very clever way and therefore U/d ratio facilities the comparison between

the different studies reported. This ratio is an approximation widely used to estimate

the electric field intensity inside the tumor.

Emax, Emin and EE values may be useful to propose electrode configurations more

feasible for tumor treatment. Configurations I, II and IV concentrate more the electric

field lines in the target tissue between the electrodes. As a consequence, these may be

suggested for the solid tumors treatment with electrotherapy and other electric field

based therapies, as electrochemotherapy and irreversible tissue ablation. For this, we

should keep in mind that electric field strength should be above a certain irreversible

threshold value of the electric field in order to cause permanent damages on the target

tissue leading to its partial or complete destruction. However, it should not be exposed

to excessively high electric field to avoid damages to the surrounding healthy tissue.

At first sight, Configuration III is un-useful for the solid tumors treatment if we keep

in mind that it concentrates less the electric field lines in the tumor and shows low

values of EE and Emax (10 times lower than that obtained by Configurations II and IV).

We have observed that the tumor complete remission and the conversion of an inoper-

able tumor in operable (patients with breast cancer) are reached, independently of the

tumor histological variety for voltage strengths below 6 V. In this case, we make a con-

venient distribution of the electrodes in the tumor combined with the intra-tumor

injected saline solution.

A potential clinical application of Configuration III may be in the selective treatment

of the tumor-healthy tissue interface (or tumor border), which is a complex region due

to the simultaneous presence of both cancerous and healthy cells and other cellular

components.

This interface is rich in blood and lymphatic vessels, in dependence of the tumor type,

in addition to the existence of high sialic and lactic acid concentrations, fact that may

indicate that this tumor region has high conductivity. In this case, it is not required high

electric field strength. The knowledge of this interface may be interest for the therapist

and an indicator of the difference between the tumor and its surrounding healthy tissue,

aspects which should be considered in the therapeutic planning before treatment. This

allows an adequate insertion and distribution of the electrodes inside and/or at the

tumor border, in dependence of the electrodes of the electrodes configuration type in

agreement with other studies [11,13-16]. Hence, we should keep in mind that the sur-

rounding healthy tissue is affected by the electric field (electric current density) when

the electrodes are inserted outside and/or at border of the tumor, being more marked
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when the tumor differentiates more than its surrounding healthy tissue, as previously

reported by other authors [13,15].

Also, Configuration III may be used for cancer treatment if we use symmetric para-

bolic configurations (similarly as for Configuration IV) and/or combining it with other

pieces of different conic sections and the electrode arrays actually used. From the elec-

trode configurations above mentioned, it is possible to propose other more complex

electrode arrays: i) two elliptical pieces with different eccentricities; ii) one elliptical

piecewise of eccentricity e with the parabola; iii) one elliptical piecewise of eccentricity

given with one branch of the hyperbola; iv) the parabola with one branch of the hyper-

bola of eccentricity e; and vi) two branches of hyperbola with different eccentricities).

For this, we fix the origin (vertex) in the focus of one piecewise the ellipse and hyper-

bola (parabola) and thus express the equation of the other piecewise of another conic

section with respect to this frame of reference (origin) by means of a translation to the

focus of the first conic. This allows the use of Configurations I, II, III and IV, though

these have not been used in the preclinical and clinical studies.

The above mentioned is important in the therapeutic planning previous to the electro-

therapy application because we may choose the polarity and positioning of the electro-

des, as well as the shape of the electrodes array, which have a marked influence in the

potential and electric field distributions. These electric field distributions generated for

these electrode arrays may be experimentally verified by means of diverse imaging tech-

niques as the Electric Current Density Imaging [18,27], Electrical Impedance Tomogra-

phy [28], Magnetic Resonance Electrical Impedance Tomography [29], Magnetic

Induction Tomography, Magnetoacoustic Tomography and Magnetoacoustic Tomogra-

phy with Magnetic induction [30]. Also, for showing the plausibility of this mathematical

approach, an in vivo model may be implemented in order to evaluate the influence of the

parameters of these electrode arrays in the tumor growth kinetic, aspect that may be

theoretically corroborated, as previously reported by Cabrales et al. [22].

We are not aware of the use of the conic sections in electrotherapy (electrochemother-

apy and ablation therapy) for the cancer, but the use of these is feasible in the preclinical

and clinical studies. In patients with cancer, these electrode configurations should be

used in order to evaluate the safety (phase I of a clinical trial), adverse effects and toxi-

city (phase II of a clinical trial), and effectiveness (phase III of a clinical trial). In clinical

studies, the electrodes insertion methodology for Configurations I, II, III and IV is simi-

lar to that used at present (electrodes inserted into the base perpendicular to the tumor

long axis) [1-6,17,19]. The essential steps of this methodology are:

1. The tumor size is determined by clinic and/or any imaging techniques (ultrasound,

Computer Tomography or Imaging Nuclear Magnetic Resonance). Plastic cannulae

with style are inserted, through holes (printed in a plastic board and distributed in a

family of conic sections that completely cover the tumor size), as shown in Figure 5

for an electrode elliptical array (isometric projection). This is also valid for electrode

arrays with other shapes (circle, parabola and hyperbola).

2. The styles are withdrawn and the electrodes are inserted in the tumor mass

through the cannulae to ensure that the electric field will cover all the tumor mass

when the voltage is applied to the electrodes (Figure 5). After insertion of the electro-

des, the cannulae are withdrawn to the edge of normal tissue. This procedure guaran-

tees that the electrodes are completely inserted into the solid tumor to maximize
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tumor destruction with the minimum damage in the organism. Finally, the electrodes

are connected to the negative poles (the cathodes) of a custom built constant voltage

(current) generator, and the other needles are connected to the positive poles (the

anodes).

The results of this study suggest that different physical and chemical quantities, such

as heat, temperature, pH fronts and electrochemical reactions around electrodes may

be calculated from the electric field generated by electrode arrays with shapes of coni-

cal sections, which may contribute to the understanding of the electrotherapy antitu-

mor mechanisms, as previously report other authors [5,10,18,20,32].

Conclusion
In conclusion, the mathematical approach presented in this study is an extension of

the works of Dev et al. [11], Čorović et al. [13] and Aguilera et al. [14,15] and constitu-

tes a useful tool for the design of electrode arrays with different shapes of conic sec-

tions by means of the use the unifying principle. Also, there is a good correspondence

between the analytical and numerical solutions for the potential and electric field dis-

tributions generated by the electrode array with different conic sections.
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